Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

In vivo visualization of abdominal malignancies with acoustic radiation force elastography.

Thumbnail
View / Download
2.0 Mb
Date
2008-01-07
Authors
Fahey, BJ
Nelson, RC
Bradway, DP
Hsu, SJ
Dumont, DM
Trahey, GE
Repository Usage Stats
160
views
197
downloads
Abstract
The utility of acoustic radiation force impulse (ARFI) imaging for real-time visualization of abdominal malignancies was investigated. Nine patients presenting with suspicious masses in the liver (n = 7) or kidney (n = 2) underwent combined sonography/ARFI imaging. Images were acquired of a total of 12 tumors in the nine patients. In all cases, boundary definition in ARFI images was improved or equivalent to boundary definition in B-mode images. Displacement contrast in ARFI images was superior to echo contrast in B-mode images for each tumor. The mean contrast for suspected hepatocellular carcinomas (HCCs) in B-mode images was 2.9 dB (range: 1.5-4.2) versus 7.5 dB (range: 3.1-11.9) in ARFI images, with all HCCs appearing more compliant than regional cirrhotic liver parenchyma. The mean contrast for metastases in B-mode images was 3.1 dB (range: 1.2-5.2) versus 9.3 dB (range: 5.7-13.9) in ARFI images, with all masses appearing less compliant than regional non-cirrhotic liver parenchyma. ARFI image contrast (10.4 dB) was superior to B-mode contrast (0.9 dB) for a renal mass. To our knowledge, we present the first in vivo images of abdominal malignancies in humans acquired with the ARFI method or any other technique of imaging tissue elasticity.
Type
Journal article
Subject
Abdominal Neoplasms
Acoustics
Aged
Aged, 80 and over
Biophysical Phenomena
Biophysics
Carcinoma, Hepatocellular
Elasticity Imaging Techniques
Female
Humans
Kidney Neoplasms
Liver Neoplasms
Male
Middle Aged
Tomography, X-Ray Computed
Permalink
https://hdl.handle.net/10161/10363
Published Version (Please cite this version)
10.1088/0031-9155/53/1/020
Publication Info
Fahey, BJ; Nelson, RC; Bradway, DP; Hsu, SJ; Dumont, DM; & Trahey, GE (2008). In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol, 53(1). pp. 279-293. 10.1088/0031-9155/53/1/020. Retrieved from https://hdl.handle.net/10161/10363.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Bradway

David Bradway

Research Scientist
David P. Bradway is a research scientist in the Biomedical Engineering Department at Duke University. He earned his Ph.D. in biomedical engineering in 2013 from Duke. Afterward, he was a guest postdoc at the Technical University of Denmark (DTU), supported by a Whitaker International Program Scholarship. He has conducted research internships at the Cleveland Clinic Foundation, Volcano Corporation, and Siemens Healthcare, working on ultrasound research since 2002.
Nelson

Rendon C. Nelson

Consulting Associate in the Department of Radiology
Diagnostic Imaging of the Liver; Specifically the Detection and Characterization of Focal and Diffuse Processes by US, CT and MRI. Percutaneous Image-Guided Thermal Ablation of Hepatic and Renal Tumors
Trahey

Gregg E. Trahey

Robert Plonsey Distinguished Professor of Biomedical Engineering
My laboratory develops and evaluates novel ultrasonic imaging methods. Current projects involve high resolutioon imaging of the breast and mechanical characterization of the breast and cardiovascular system. We conduct phantom, animal, ex vivo and in vivo trials. Current clinical trials involve imaging of soft and hard vascular plaques and mecahnical imaging of breast lesions.
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University