Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic Dynamics and Epigenetic Regulation of Gene Expression: from Stimulus Response to Evolutionary Adaptation

Thumbnail
View / Download
13.4 Mb
Date
2016
Author
Gomez-Schiavon, Mariana
Advisor
Buchler, Nicolas E
Repository Usage Stats
377
views
1,412
downloads
Abstract

How organisms adapt and survive in continuously fluctuating environments is a central question of evolutionary biology. Additionally, organisms have to deal with the inherent stochasticity in all cellular processes. The purpose of this thesis is to gain insights into how organisms can use epigenetics and the stochasticity of gene expression to deal with a fluctuating environment. To accomplish this, two cases at different temporal and structural scales were explored: (1) the early transcriptional response to an environmental stimulus in single cells, and (2) the evolutionary dynamics of a population adapting to a recurring fluctuating environment. Mathematical models of stochastic gene expression, population dynamics, and evolution were developed to explore these systems.

First, the information available in sparse single cell measurements was analyzed to better characterize the intrinsic stochasticity of gene expression regulation. A mathematical and statistical model was developed to characterize the kinetics of a single cell, single gene behavior in response to a single environmental stimulus. Bayesian inference approach was used to deduce the contribution of multiple gene promoter states on the experimentally measured cell-to-cell variability. The developed algorithm robustly estimated the kinetic parameters describing the early gene expression dynamics in response a stimulus in single neurons, even when the experimental samples were small and sparse. Additionally, this algorithm allowed testing and comparing different biological hypotheses, and can potentially be applied to a variety of systems.

Second, the evolutionary adaptation dynamics of epigenetic switches in a recurrent fluctuating environment were studied by observing the evolution of gene regulatory circuit in a population under multiple environmental cycles. The evolutionary advantage of using epigenetics to exploit the natural noise in gene expression was tested by competing this strategy against the classical genetic adaptation through mutations in a variety of evolutionary conditions. A trade-off between minimizing the adaptation time after each environmental transition and increasing the robustness of the phenotype during the constant environment between transitions was observed. Surviving lineages evolved bistable, epigenetic switching to adapt quickly in fast fluctuating environments, whereas genetic adaptation with high robustness was favored in slowly fluctuating environments.

Type
Dissertation
Department
Computational Biology and Bioinformatics
Subject
Evolution & development
Adaptation
Bistability
Epigenetics
Evolution
Stochastic dynamics
Systems biology
Permalink
https://hdl.handle.net/10161/13400
Citation
Gomez-Schiavon, Mariana (2016). Stochastic Dynamics and Epigenetic Regulation of Gene Expression: from Stimulus Response to Evolutionary Adaptation. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/13400.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University