Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Undergraduate Honors Theses and Student papers
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Undergraduate Honors Theses and Student papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved Genomic Selection using Vowpal Wabbit with Random Fourier Features

Thumbnail
View / Download
735.9 Kb
Date
2017-05-08
Author
Zhang, Jaslyn
Advisor
Mukherjee, Sayan
Repository Usage Stats
272
views
1,217
downloads
Abstract
Nonlinear regression models are often used in statistics and machine learning due to greater accuracy than linear models. In this work, we present a novel modeling framework that is both computationally efficient for high-dimensional datasets, and predicts more accurately than most of the classic state-of-the-art predictive models. Here, we couple a nonlinear random Fourier feature data transformation with an intrinsically fast learning algorithm called Vowpal Wabbit or VW. The key idea we develop is that by introducing nonlinear structure to an otherwise linear framework, we are able to consider all possible higher-order interactions between entries in a string. The utility of our nonlinear VW extension is examined, in some detail, under an important problem in statistical genetics: genomic selection (i.e.~the prediction of phenotype from genotype). We illustrate the benefits of our method and its robustness to underlying genetic architecture on a real dataset, which includes 129 quantitative heterogeneous stock mice traits from the Wellcome Trust Centre for Human Genetics.
Type
Honors thesis
Department
Statistical Science
Subject
Fourier Transforms
Vowpal Wabbit
Genomic Selection
Permalink
https://hdl.handle.net/10161/14308
Citation
Zhang, Jaslyn (2017). Improved Genomic Selection using Vowpal Wabbit with Random Fourier Features. Honors thesis, Duke University. Retrieved from https://hdl.handle.net/10161/14308.
Collections
  • Undergraduate Honors Theses and Student papers
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Undergraduate Honors Theses and Student papers


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University