Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative analysis of the gut microbiome in lemurs (Order: Primates)

Thumbnail
View / Download
58.2 Mb
Date
2017
Author
McKenney, Erin McKenney
Advisor
Yoder, Anne D
Repository Usage Stats
326
views
58
downloads
Abstract

Host fitness is impacted by trillions of bacteria in the gastrointestinal tract (GIT) that facilitate development of the intestines and brain, digest fiber, and defend against pathogenic invasion. Gut microbes are closely tied to host development and, by extension, the components of life history. Yet, because microbes are capable of lateral gene transfer across vast phylogenetic distances, scientists have struggled to determine whether the taxonomic (microbiota) or genetic (microbiome) composition of a microbial community plays a greater role in its symbiosis with the host. The overarching theme of this dissertation is to explore the interplay between the phylogeny and phenotype of both host and its microbiome. By using 16S rRNA gene amplicon sequencing, metagenomic sequencing, and metabolomics to compare gut microbial communities associated with captive hosts, we are able to identify which microbial community features are correlated with specific host factors. First we compared gut colonization in infants across three lemur species with different diets and gut morphologies. Next we used metagenomic sequencing and nuclear magnetic resonance (NMR) spectroscopy to assess the suite of metabolic pathways and products associated with each host species. Both studies suggest that fiber is a critical dietary component associated with key features of microbial colonization in healthy infants. We next compared bacterial lineages shared between lemurs and bamboo specialists to assess which specific classes of microbial membership are impacted by host phylogeny versus diet. Finally, we compared secondary colonization trajectories to assess the impact of Cryptosporidium, an intestinal pathogen that seasonally infects captive sifakas at the Duke Lemur Center. We find that, while diet predictably shapes community structure and function during colonization, disease incurs age-related impacts on each individual’s microbiome uniquely.

Type
Dissertation
Department
Biology
Subject
Biology
Bioinformatics
Ecology
Duke Lemur Center
gut microbiome
lemurs
Permalink
https://hdl.handle.net/10161/14392
Citation
McKenney, Erin McKenney (2017). Comparative analysis of the gut microbiome in lemurs (Order: Primates). Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/14392.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University