Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic modeling and Bayesian predictive synthesis

Thumbnail
View / Download
33.3 Mb
Date
2017
Author
McAlinn, Kenichiro
Advisor
West, Mike
Repository Usage Stats
929
views
411
downloads
Abstract

This dissertation discusses model and forecast comparison, calibration, and combination from a foundational perspective. For nearly five decades, the field of forecast combination has grown exponentially. Its practicality and effectiveness in important real world problems concerning forecasting, uncertainty, and decisions propels this. Ample research-- theoretical and empirical-- into new methods and justifications have been produced. However, its foundations-- the philosophical/theoretical underpinnings on which methods and strategies are built upon-- have been unexplored in recent literature. Bayesian predictive synthesis (BPS) defines a coherent theoretical basis for combining multiple forecast densities, whether from models, individuals, or other sources, and generalizes existing forecast pooling and Bayesian model mixing methods. By understanding the underlying foundation that defines the combination of forecasts, multiple extensions are revealed, resulting in significant advances in the understanding and efficacy of the methods for decision making in multiple fields.

The extensions discussed in this dissertation are into the temporal domain. Many important decision problems are time series, including policy decisions in macroeconomics and investment decisions in finance, where decisions are sequentially updated over time. Time series extensions of BPS are implicit dynamic latent factor models, allowing adaptation to time-varying biases, mis-calibration, and dependencies among models or forecasters. Multiple studies using different data and different decision problems are presented, demonstrating the effectiveness of dynamic BPS, in terms of forecast accuracy and improved decision making, and highlighting the unique insight it provides.

Type
Dissertation
Department
Statistical Science
Subject
Statistics
Economics
Finance
Bayesian statistics
Dynamic models
Econometrics
Forecast combination
Forecasting
Time series
Permalink
https://hdl.handle.net/10161/14508
Citation
McAlinn, Kenichiro (2017). Dynamic modeling and Bayesian predictive synthesis. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/14508.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University