Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Model Uncertainty and Foundations

Thumbnail
View / Download
807.6 Kb
Date
2018
Author
Pena, Victor
Advisor
Berger, James O.
Repository Usage Stats
175
views
89
downloads
Abstract

This dissertation contains research on Bayesian model uncertainty and foundations of statistical inference.

In Chapter 2, we study the properties of constrained empirical Bayes (EB) priors on regression coefficients. Unrestricted EB procedures can have undesirable properties when their ``estimates'' correspond to hyperparameters that would be seen as overly informative in an actual Bayesian analysis. For that reason, we propose constraining EB procedures so that they are at least as vague as proper Bayesian lower bounds (which can be either informative or ``noninformative''). The main emphasis of the chapter is studying the properties of a constrained EB prior that has Zellner's g-prior with g=n as its lower bound. We show that it avoids some of the pitfalls of unconstrained EB priors and the lower bound, and see that it behaves similarly to the Bayesian Information Criterion (BIC).

In Chapter 3, we take a close look at ``information inconsistency.'' Information inconsistency is said to occur when there is overwhelming evidence in favor of a hypothesis in finite sample sizes, but the Bayes factor in its favor is finite. In Chapter 3, we investigate when it occurs (and when it does not) in normal linear models. Our conclusion is that conjugate priors are usually information-inconsistent, but thick-tailed priors and empirical Bayes procedures avoid the issue. The chapter also includes a discussion of the different formalizations of information inconsistency that have appeared in the literature, which are not equivalent.

In Chapter 4, we turn to ``limit consistency,'' which is an asymptotic property of two-sample tests. Suppose the sample size of one of the groups goes to infinity while the sample size of the other one stays fixed. According to our definition, limit consistency occurs if, under this asymptotic regime, the decision rule of the two-sample test converges to the decision rule of the one-sample test we would have performed had we known the parameters of the group with ``infinite'' data. In Chapter 4, we study limit consistency in the context of comparing whether two normal means are equal. We conclude that parametrizations where the 2 groups have common parameters are generally limit-consistent when the prior on the common parameters is flat.

Finally, the goal of Chapter 5 is discussing 2 articles that cast doubt on the correctness and applicability of Birnbaum's theorem, which implies that statisticians that wish to respect the sufficiency and conditionality principle must accept the likelihood principle. This result, which was proved in 1962, is still highly controversial because some statisticians believe that sufficiency and conditionality are appealing, but the likelihood principle is not (for example, the likelihood principle precludes the use of p-values, which are highly popular in common statistical practice). In Chapter 5, we provide counterarguments to the criticisms and put them in historical context.

Type
Dissertation
Department
Statistical Science
Subject
Statistics
Permalink
https://hdl.handle.net/10161/17494
Citation
Pena, Victor (2018). Bayesian Model Uncertainty and Foundations. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/17494.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University