Show simple item record

3D Printable Lithium Ion Batteries and the Effect of Aspect Ratio of CuAg Nanowires on Graphite Anode Performance.

dc.contributor.advisor Wiley, Benjamin J
dc.contributor.author Reyes, Christopher
dc.date.accessioned 2018-09-21T16:09:29Z
dc.date.available 2020-08-30T08:17:09Z
dc.date.issued 2018
dc.identifier.uri https://hdl.handle.net/10161/17518
dc.description.abstract <p>The majority of consumer electronic devices, electric vehicles, and aerospace electronics are powered by lithium ion batteries because of their high energy and power densities. Commercially available lithium ion batteries consist of electrodes, separators and current collectors fabricated in multilayer rolls that are packaged in cylindrical or rectangular cases. The size and shape of the package as well as the composition of the electrode has a significant impact on the battery life and design of the products they power. For example, the battery life and shape of portable electronics such as cell phones or laptops, is governed by the volume that is dedicated to the battery. In the case of electric vehicles, decreasing the size and weight of the battery while increasing capacity is an engineering challenge that affects vehicle range and cost. Therefore, the of my dissertation consists of the development of a novel 3D printable lithium ion battery nanocomposites and the integration of conductive metal nanomaterials into conventional lithium ion anodes. Here, we report the development of PLA-anode, cathode, and separator materials that enable 3D printing of complete lithium ion batteries with a low-cost FFF printer for the first time. The most common 3D printing polymer polylactic acid (PLA) is an insulator. However, our work demonstrates that 3D printed PLA can be infused with a mixture of ethyl methyl carbonate, propylene carbonate, and LiClO4 provides an ionic conductivity of 2.3 x 10−4 S cm−1 which is comparable to that of polymer and hybrid electrolytes (10−3 to 10−4 S cm−1). It was found that up to 12-30 volume % of solids, depending on the filler morphology, could be mixed into PLA without causing it to clog during 3D printing. It was also found that not only is electrical conductivity crucial to the performance of a 3D printed lithium ion battery, but efficient electrical contact to the active materials is as well. To that effect, we investigated the effect of aspect ratio of silver-copper core-shell nanowires on the performance enhancement of a commercially fabricated graphite lithium ion anodes. Currently, carbon is the most common conductive filler used in commercial lithium ion battery anodes. We hypothesize that a more conductive, high aspect ratio would improve the performance of a lithium ion battery. We examined the effect of exchanging carbon with CuAg nanowires as the conductive filler in graphite lithium ion batteries. We tested 4 different aspect ratios and found that not only does aspect ratio matter, diameter and length have profound effect on capacity and energy of the anode at the same volume percent as carbon conductive filler.</p>
dc.subject Materials Science
dc.subject 3D Printing
dc.subject Additive Manufacturing
dc.subject Conductive Nanomaterials
dc.subject Lithium Ion Batteries
dc.subject Nanowires
dc.subject PLA Conductivity
dc.title 3D Printable Lithium Ion Batteries and the Effect of Aspect Ratio of CuAg Nanowires on Graphite Anode Performance.
dc.type Dissertation
dc.department Chemistry
duke.embargo.months 23


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record