Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning, Phase Stability, and Disorder with the Automatic Flow Framework for Materials Discovery

Thumbnail
View / Download
86.2 Mb
Date
2018
Author
Oses, Corey
Advisor
Curtarolo, Stefano
Repository Usage Stats
184
views
89
downloads
Abstract

Traditional materials discovery approaches - relying primarily on laborious experiments - have controlled the pace of technology. Instead, computational approaches offer an accelerated path: high-throughput exploration and characterization of virtual structures. These ventures, performed by automated ab-initio frameworks, have rapidly expanded the volume of programmatically-accessible data, cultivating opportunities for data-driven approaches. Herein, a collection of robust characterization methods are presented, implemented within the Automatic Flow Framework for Materials Discovery (AFLOW), that leverages materials data for the prediction of phase diagrams and properties of disordered materials. These methods directly address the issue of materials synthesizability, bridging the gap between simulation and experiment. Powering these predictions is the AFLOW.org repository for inorganic crystals, the largest and most comprehensive database of its kind, containing more than 2 million compounds with about 100 different properties computed for each. As calculated with standardized parameter sets, the wealth of data also presents a favorable learning environment. Machine learning algorithms are employed for property prediction, descriptor development, design rule discovery, and the identification of candidate functional materials. When combined with physical models and intelligently formulated descriptors, the data becomes a powerful tool, facilitating the discovery of new materials for applications ranging from high-temperature superconductors to thermoelectrics. These methods have been validated by the synthesis of two new permanent magnets introduced herein - the first discovered by computational approaches.

Description
Dissertation
Type
Dissertation
Department
Mechanical Engineering and Materials Science
Subject
Materials Science
Ab-initio
Disorder
High Throughput
Machine Learning
Materials Informatics
Phase Stability
Permalink
https://hdl.handle.net/10161/18254
Citation
Oses, Corey (2018). Machine Learning, Phase Stability, and Disorder with the Automatic Flow Framework for Materials Discovery. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/18254.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University