Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topics in Bayesian Spatiotemporal Prediction of Environmental Exposure

Thumbnail
View / Download
2.5 Mb
Date
2019
Author
White, Philip Andrew
Advisor
Gelfand, Alan E
Repository Usage Stats
311
views
212
downloads
Abstract

We address predictive modeling for spatial and spatiotemporal modeling in a variety of settings. First, we discuss spatial and spatiotemporal data and corresponding model types used in later chapters. Specifically, we discuss Markov random fields, Gaussian processes, and Bayesian inference. Then, we outline the dissertation.

In Chapter 2, we consider the setting where areal unit data are only partially observed. First, we consider setting where a portion of the areal units have been observed, and we seek prediction of the remainder. Second, we leverage these ideas for model comparison where we fit models of interest to a portion of the data and hold out the rest for model comparison.

In Chapters 3 and 4, we consider pollution data from Mexico City in 2017. In Chapter 3 we forecast pollution emergencies. Mexico City defines pollution emergencies using thresholds that rely on regional maxima for ozone and for particulate matter with diameter less than 10 micrometers (PM10). To predict local pollution emergencies and to assess compliance with Mexican ambient air quality standards, we analyze hourly ozone and PM10 measurements from 24 stations across Mexico City from 2017 using a bivariate spatiotemporal model. With this model, we predict future pollutant levels using current weather conditions and recent pollutant concentrations. Employing hourly pollutant projections, we predict regional maxima needed to estimate the probability of future pollution emergencies. We discuss how predicted compliance with legislated pollution limits varies across regions within Mexico City in 2017.

In Chapter 4, we propose a continuous spatiotemporal model for Mexico City ozone levels that accounts for distinct daily seasonality, as well as variation across the city and over the peak ozone season (April and May) of 2017. To account for these patterns, we use covariance models over space, circles, and time. We review relevant existing covariance models and develop new classes of nonseparable covariance models appropriate for seasonal data collected at many locations. We compare the predictive performance of a variety of models that utilize various nonseparable covariance functions. We use the best model to predict hourly ozone levels at unmonitored locations in April and May to infer compliance with Mexican air quality standards and to estimate respiratory health risk associated with ozone exposure.

Description
Dissertation
Type
Dissertation
Department
Statistical Science
Subject
Statistics
Environmental health
Bayesian statistics
Gaussian process
Markov random field
nonseparable covariance
pollution monitoring
spatial statistics
Permalink
https://hdl.handle.net/10161/18662
Citation
White, Philip Andrew (2019). Topics in Bayesian Spatiotemporal Prediction of Environmental Exposure. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/18662.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University