Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Random Orthogonal Matrices with Applications in Statistics

Thumbnail
View / Download
743.8 Kb
Date
2019
Author
Jauch, Michael
Advisors
Hoff, Peter D.
Dunson, David B.
Repository Usage Stats
496
views
685
downloads
Abstract

This dissertation focuses on random orthogonal matrices with applications in statistics. While Bayesian inference for statistical models with orthogonal matrix parameters is a recurring theme, several of the results on random orthogonal matrices may be of interest to those in the broader probability and random matrix theory communities. In Chapter 2, we parametrize the Stiefel and Grassmann manifolds, represented as subsets of orthogonal matrices, in terms of Euclidean parameters using the Cayley transform and then derive Jacobian terms for change of variables formulas. This allows for Markov chain Monte Carlo simulation from probability distributions defined on the Stiefel and Grassmann manifolds. We also establish an asymptotic independent normal approximation for the distribution of the Euclidean parameters corresponding to the uniform distribution on the Stiefel manifold. In Chapter 3, we present polar expansion, a general approach to Monte Carlo simulation from probability distributions on the Stiefel manifold. When combined with modern Markov chain Monte Carlo software, polar expansion allows for routine and flexible posterior inference in models with orthogonal matrix parameters. Chapter 4 addresses prior distributions for structured orthogonal matrices. We introduce an approach to constructing prior distributions for structured orthogonal matrices which leads to tractable posterior simulation via polar expansion. We state two main results which support our approach and offer a new perspective on approximating the entries of random orthogonal matrices.

Description
Dissertation
Type
Dissertation
Department
Statistical Science
Subject
Statistics
Applied mathematics
Mathematics
Bayesian inference
Markov chain Monte Carlo
multivariate data
orthogonal matrix
random matrix
Stiefel manifold
Permalink
https://hdl.handle.net/10161/19874
Citation
Jauch, Michael (2019). Random Orthogonal Matrices with Applications in Statistics. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/19874.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University