Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Belief Propagation with Deep Unfolding for High-dimensional Inference in Communication Systems

Thumbnail
View / Download
861.7 Kb
Date
2019
Author
Lian, Mengke
Advisor
Pfister, Henry
Repository Usage Stats
386
views
535
downloads
Abstract

High-dimensional probability distributions are important objects in a wide variety of applications for example, most prediction and inference applications focus on computing the posterior marginal of a subset of variables conditioned on observations of another subset of variables. In practice, this is untractable due to the curse of dimensionality. In some problems, high-dimensional joint probability distributions can be represented by factor graphs. For such problems, belief propagation (BP) is a polynomial-time algorithm that provides an efficient approximation of the posterior marginals, and it is exact if the factor graph does not contain cycles. With rapid improvements in machine learning over the past decade, using machine learning techniques to optimize system parameters is an emerging field in communication research.

This thesis considers applying BP for communication systems, and focuses on incorporating domain knowledge into machine learning models. For compressive sensing, two variants of relaxed belief propagation (RBP) algorithm are proposed. One improves the stability over a larger class of measurement matrices and the other reduces the computational complexity when measurement matrix is in the product of several sparse matrices. For optical communication, the non-linear Schrodinger equation is solved by modeling the signal in each step of split-step Fourier method as a multivariate complex Gaussian distribution. Then, the parameters of the Gaussian are tracked through in digital back-propagation. For recursive decoding for Reed–Muller codes, the algebraic structure of the code is utilized and a recursive BP approach for redundant factor graphs is developed for near-optimal decoding. Finally, we use deep unfolding to unroll BP decoding as a recursive neural network and introduce the idea of a the parameter adaptive network to learn the relation between channel SNR and optimal BP weight factors.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Engineering
belief propagation
channel coding
compressed sensing
deep unfolding
optical communication
Permalink
https://hdl.handle.net/10161/20148
Citation
Lian, Mengke (2019). Belief Propagation with Deep Unfolding for High-dimensional Inference in Communication Systems. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/20148.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University