Analyzing Amazon CD Reviews with Bayesian Monitoring and Machine Learning Methods
This paper analyzes customer reviews of CDs sold on Amazon.com using various statistical and machine learning methods. We investigated the distribution properties through exploratory analyses and the Bayesian monitoring method was utilized to analyze life cycles of CDs. We proposed an adjustment to the classic Bayesian monitoring technique which allows it to deal with extreme changes in data. To predict how many reviews CDs get, we compared the performances of a range of machine learning models and identified important features affecting the number of reviews using permutation importance.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Masters Theses
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info