Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling Releases of Polymer Additives from Microplastics into the Aqueous Environment

Thumbnail
View / Download
912.7 Kb
Date
2020
Author
Feng, Siyuan
Advisor
Wiesner, Mark
Repository Usage Stats
201
views
429
downloads
Abstract

Microplastics (MPs) are becoming an emerging problem due to increased consumption of plastic. Despite research on MPs acting as sinks of contaminants, the potential of leaching additives out of MPs has been given little attention. Given challenges like the slow release rates of additives and the variety of physical chemical properties of MPs, mathematical models are great tools to explore this problem. In this study, the internal controlled diffusion model was used to describe release behaviors of additives from MPs into aqueous environments. This model was then applied to study Bisphenol A (BPA) and 4-t-butylphenol (TBP) leaching from epoxy MPs. Simulations on the influence of properties of microplastics and various temperatures were completed. Calculated diffusion coefficients of BPA and TBP based on leaching experiments data range from 10-13.3 cm2/s to 10-14.3 cm2/s and 10-12.1 cm2/s to 10-12.7 cm2/s, respectively. Though at low release rates, the release process was accelerated significantly by smaller sizes and irregular shapes of MPs. With a particle radius reduced from 1mm to 100 nm, the half-life of BPA changes from 3000 years to several minutes, and from 30 years to several seconds for TBP. Also, temperature dependence of migration obeys the Arrhenius equation and activated energies for BPA and TBP are 48.9 kJ/mol and 27.0 kJ/mol, respectively. To sum up, simpler plastic structures, smaller sizes, rough surfaces, smaller additive molecules, and the higher temperature facilitate the release process. This model contributes to the risk assessment of additives releasing from MPs. Yet the real problem might be far more complex considering special properties of plastics materials and environmental conditions. Thus, more research is required for a deeper understanding of this problem.

Description
Master's thesis
Type
Master's thesis
Department
Civil and Environmental Engineering
Subject
Environmental engineering
Additives
Diffusion model
Microplastics
Permalink
https://hdl.handle.net/10161/20827
Citation
Feng, Siyuan (2020). Modeling Releases of Polymer Additives from Microplastics into the Aqueous Environment. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/20827.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University