Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic Optimization in Market Design and Incentive Management Problems

Thumbnail
Files
Chen_duke_0066D_15706.pdf
1.8 Mb
Chen_duke_0066D_17/Non-ExclusiveDistributionLicenseForm _signed.pdf
266.3 Kb
Date
2020
Author
Chen, Mingliu
Advisor
Sun, Peng
Repository Usage Stats
155
views
155
downloads
Abstract

This dissertation considers practical operational settings, in which a decision maker needs to either coordinate preferences or to align incentives among different parties. We formulate these issues into stochastic optimization problems and use a variety of techniques from the theories of applied probability, queueing and dynamic programming.

First, we study a stochastic matching problem. We consider matching over time with short and long-lived players who are very sensitive to mismatch, and propose a novel method to characterize the mismatch. In particular, players' preferences are uniformly distributed on a circle, so the mismatch between two players is characterized by the one-dimensional circular angle between them. This framework allows us to capture matching processes in applications ranging from ride sharing to job hunting. Our analytical framework relies on threshold matching policies, and is focused on a limiting regime where players demonstrate low tolerance towards mismatch. This framework yields closed-form optimal matching thresholds. If the matching process is controlled by a centralized social planner (e.g. an online matching platform), the matching threshold reflects the trade-off between matching rate and matching quality. The corresponding optimal matching threshold is smaller than myopic matching threshold, which helps building market thickness. We further compare the centralized system with decentralized systems, where players decide their matching partners. We find that matching controlled by either side of the market may achieve optimal social welfare.

Second, we consider a dynamic incentive management problem in which a principal induces effort from an agent to reduce the arrival rate of a Poisson process of adverse events. The effort is costly to the agent, and unobservable to the principal, unless the principal is monitoring the agent. Monitoring ensures effort but is costly to the principal. The optimal contract involves monetary payments and monitoring sessions that depend on past arrival times. We formulate the problem as a stochastic optimal control model and solve the problem analytically. The optimal schedules of payment and monitoring demonstrate different structures depending on model parameters. Overall, the optimal dynamic contracts are simple to describe, easy to compute and implement, and intuitive to explain.

Description
Dissertation
Type
Dissertation
Department
Business Administration
Subject
Operations research
Dynamic Programming
Market Design
Matching
Mechanism Design
Queueing Theory
Permalink
https://hdl.handle.net/10161/20989
Citation
Chen, Mingliu (2020). Stochastic Optimization in Market Design and Incentive Management Problems. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/20989.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University