Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robotics and Virtual Reality for Optical Coherence Tomography-Guided Ophthalmic Surgery and Diagnostics

Thumbnail
View / Download
59.4 Mb
Date
2020
Author
Draelos, Mark
Advisor
Izatt, Joseph
Repository Usage Stats
381
views
80
downloads
Abstract

Ophthalmology is the only surgical specialty that routinely employs both microsurgical techniques and live intraoperative imaging, especially optical coherence tomography (OCT). Consequently, ophthalmic surgeons routinely face challenges in visualization and manipulation of small ocular tissues or in interpreting intraoperative imaging to guide their actions. This dissertation therefore seeks to advance the state-of-the-art in ophthalmic surgery with regards to manipulation, visualization, and interpretation.

First, we address the interpretation challenge in ophthalmic surgery where live volumetric imaging from OCT systems recently incorporated into surgical microscopes has freed surgeons from the otherwise universal top-down viewpoint. These new viewpoints, however, disorient surgeons when directions of their hand motions and viewed tool motions do not align. Thus, we introduce a robotic surgery paradigm to decouple surgeons' hands from their tools and ensure that viewed tool motions align in arbitrary viewpoints. We implement this concept in a physical testbed system for performing macroscopic tasks and evaluate this system through a user study with mock surgical procedures.

Next, we consider immersive virtual reality (VR) as a technique for displaying complex images and thereby overcome the visualization challenge of conveying intraoperative OCT to surgeons. Far from "blinded" to the outside world, an VR-immersed surgeon potentially has access to much more information than they could see when obligated to direct their attention through the microscope oculars alone. To provide a compelling visual experience, however, immersive VR systems require complete control over users' visual inputs and thus frequently cause motion sickness with framerates lower than 90 fps per eye. By contrast, modern volumetric OCT visualization techniques typically render at no more than 30 fps. Therefore, we introduce GPU approaches and data organization techniques for high-frame rate ray casting at 180 fps. We conduct performance analyses of these techniques, develop an interactive VR-OCT viewer, and demonstrate guidance of mock surgical procedures exclusively by live OCT and video feedthrough from within immersive VR.

Then, we focus on deep anterior lamellar keratoplasty (DALK), a promising technique for corneal transplantation, that poses such significant manipulation and visualization challenges that 59% of procedures fail. In DALK, surgeons must insert a needle 90% through the 500 μm cornea without penetrating its underlying membrane using a surgical microscope with poor depth perception. We propose a robot-assisted solution to jointly solve the manipulation and visualization challenges using a cooperatively-controlled, precise robot arm and live OCT imaging, respectively. We develop this DALK workstation with a commercial robot arm and a custom OCT scanner, evaluate its effectiveness for cooperative needle insertions in a study with corneal fellows, and assess its ability to perform fully automatic needle insertions.

Finally, we mitigate the visualization challenge surgeons face when obtaining OCT images of incompletely stabilized eyes, as happens frequently during procedures with only conscious sedation.

We introduce a robotically-aligned OCT scanner capable of automatic eye imaging without chinrests using a hybrid macro-mini approach. This same approach also enables an expanded ability to image non-surgical patients when chinrest stabilization is infeasible or when a trained ophthalmic photographer is unavailable. We validate the concept for anterior imaging in model eyes and perform both anterior and retinal fully autonomous imaging in human subjects.

Overall, these contributions have the potential to change ophthalmic and other surgeries with intraoperative 3D imaging in fundamental ways. By breaking down manipulation, visualization, and interpretation challenges, robotics and VR promise procedures that are more efficient for patients and more ergonomic for surgeons.

Description
Dissertation
Type
Dissertation
Department
Biomedical Engineering
Subject
Biomedical engineering
Medical imaging
Ophthalmology
motion correction
ophthalmology
optical coherence tomography
robotics
Permalink
https://hdl.handle.net/10161/21031
Citation
Draelos, Mark (2020). Robotics and Virtual Reality for Optical Coherence Tomography-Guided Ophthalmic Surgery and Diagnostics. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/21031.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University