Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of Specialized Metabolites in Apicomplexan Parasite Life Cycles

Thumbnail
View / Download
49.5 Mb
Date
2021
Author
Ganley, John Gustave
Advisor
Derbyshire, Emily R
Repository Usage Stats
81
views
1
downloads
Abstract

Across the tree of life, specialized metabolites mediate ecological interactions and can ultimately drive evolution. Characterization of these small molecules have led scientists to a greater comprehension of ecological niches at the macro- and micro-scale. A group of medicinally important organisms with life cycles that include various ecological niches are apicomplexan parasites. The most notorious parasites belong to the genera Plasmodium and Toxoplasma, which are responsible for malaria and toxoplasmosis, respectively. Traditional efforts to reduce malaria include pharmaceuticals and prevention of mosquito-based transmission through insecticides and bed nets. Despite this, malaria has prevailed. Efforts were devised to understand the chemical ecology surrounding malaria parasites during the mosquito stage to ultimately reduce transmission. Through structure-, bioinformatic-, and coculture-guided approaches, we have uncovered chemical space within the mosquito-microbiome and evaluated how microbial-produced small molecules influence the parasite during its vector stage. We have also expanded our knowledge of parasite-produce specialized metabolites. Within Toxoplasma parasites, we have begun to characterize a polyketide synthase (PKS) with unknown resultant products. Together, this work provides the basis for understanding how specialized metabolites within the mosquito microbiome affect the Plasmodium parasite transmission capacity while also investigating an underexplored area of natural product chemistry within Toxoplasma parasites.

Description
Dissertation
Type
Dissertation
Department
Chemistry
Subject
Chemistry
biosynthetic gene clusters
malaria
mosquito microbiome
natural products
serratiochelin A
stephensiolide
Permalink
https://hdl.handle.net/10161/23019
Citation
Ganley, John Gustave (2021). Investigation of Specialized Metabolites in Apicomplexan Parasite Life Cycles. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/23019.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University