Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical Inference and Community Detection in Proximity and Spatial Proteomics: Resolving the Organization of the Neuronal Proteome

Thumbnail
View / Download
27.1 Mb
Date
2021
Author
Bradshaw, Tyler Wesley
Advisor
Soderling, Scott H
Repository Usage Stats
128
views
34
downloads
Abstract

Technological advances in protein mass spectrometry (MS), aka proteomics, haveenabled high-throughput quantification of spatially-resolved, subcellular-specific proteomes. Biological insight in these experiments depends upon sound statistical analysis. Despite the myriad of existing proprietary and open-source software solutions for statistical analysis of proteomics data, these tools suffer a drawback inherent in any general solution: a loss of specificity. These tools often fail to be easily adapted to analyze experiment-specific designs. I present a flexible, linear mixed-effects model framework for assessing differential abundance in protein mass spectrometry experiments. Combined with methods to identify communities of proteins in biological networks, I extend this framework to perform inference at the level of protein groups or modules. Using these software tools, I demonstrate how module-level insight in proximity and spatial proteomics generates hypotheses that identify foci of biological function and dysfunction which may underlie the neuropathology of disease.

Description
Dissertation
Type
Dissertation
Department
Neurobiology
Subject
Neurosciences
Molecular biology
Animal diseases
Community Detection
Hypothesis Testing
Neurobiology of disease
Proximity Proteomics
Spatial Proteomics
Permalink
https://hdl.handle.net/10161/23039
Citation
Bradshaw, Tyler Wesley (2021). Statistical Inference and Community Detection in Proximity and Spatial Proteomics: Resolving the Organization of the Neuronal Proteome. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/23039.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University