Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

M6A Reshapes the Folding and Recognition Landscape of RNAs

Thumbnail
View / Download
44.5 Mb
Date
2021
Author
Liu, Bei
Advisor
Al-Hashimi, Hashim H
Repository Usage Stats
138
views
29
downloads
Abstract

Ribonucleic acid (RNA) is a versatile and dynamic biomolecule that serves as an indispensable component in the central dogma of molecular biology. The realization that RNA plays a wide variety of roles in gene expression and regulation has been accompanied by the discovery that virtually all types of RNA are chemically modified. These modifications have profound effects on RNA metabolism. N6-Methyladenosine (m6A) is an abundant post-transcriptional RNA modification that influences multiple aspects of gene expression. While m6A is thought to mainly function by recruiting reader proteins to specific RNA sites, the modification can also reshape RNA-protein and RNA−RNA interactions by altering RNA structure mainly by destabilizing base pairing. Here we sought to provide a broad and deep description of how m6A reshapes the folding and recognition landscape of RNA, which provides detailed mechanisms via which m6A exerts its biological functions.First, we show that when neighbored by a 5ʹ bulge, m6A stabilizes m6A–U base pairs and global RNA structure by ~1 kcal/mol. The bulge most likely provides the flexibility needed to allow optimal stacking between the methyl group and 3ʹ neighbor through a conformation that is stabilized by Mg2+. A bias toward this motif can help explain the global impact of methylation on RNA structure in transcriptome-wide studies. While m6A embedded in duplex RNA is poorly recognized by the YTH domain reader protein and m6A antibodies, both readily recognize m6A in this newly identified motif. The results uncover potentially abundant and functional m6A motifs that can modulate the epitranscriptomic structure landscape with important implications for the interpretation of transcriptome-wide data. In addition to altering RNA stability, m6A has also been shown to slow the kinetics of biochemical processes involving RNA-RNA interactions. However, little is known about how m6A affects the kinetic rates of RNA folding and conformational transitions that are important for RNA functions. We developed an NMR relaxation dispersion (RD) method to non-invasively and site-specifically measure nucleic acid hybridization kinetics. Using this method, we discovered that m6A selectively slows annealing rate while has minimal impact on melting rate in different sequence contexts and buffer conditions. To understand the mechanism of the m6A-induced slowdown of hybridization, we used NMR RD to dissect the kinetic pathways of duplex hybridization. We show that m6A pairs with uridine with the methylamino group in the anti conformation to form a Watson-Crick base pair that transiently exchanges on the millisecond timescale with a singly hydrogen-bonded low-populated (1%) mismatch-like conformation in which the methylamino group is syn. This ability to rapidly interchange between Watson-Crick or mismatch-like forms, combined with different syn:anti isomer preferences when paired (~1:100) versus unpaired (~10:1), explains how m6A robustly slows duplex annealing without affecting melting via two pathways in which isomerization occurs before or after duplex annealing. Our model quantitatively predicts how m6A reshapes the kinetic landscape of nucleic acid hybridization and conformational transitions and provides an explanation for why the modification robustly slows diverse cellular processes. Taken together, these results uncover the important role of m6A on modulating RNA-RNA and RNA-protein interactions through altering RNA structure and dynamics, highlighting the structural-dynamics-function relationship.

Description
Dissertation
Type
Dissertation
Department
Biochemistry
Subject
Biochemistry
Biophysics
dynamics
kinetics
m6A
RNA structure
Permalink
https://hdl.handle.net/10161/23772
Citation
Liu, Bei (2021). M6A Reshapes the Folding and Recognition Landscape of RNAs. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/23772.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University