Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient and Generalizable Neural Architecture Search for Visual Recognition

Thumbnail
View / Download
5.8 Mb
Date
2021
Author
Cheng, Hsin-Pai
Advisor
Chen, Yiran
Repository Usage Stats
77
views
108
downloads
Abstract

Neural Architecture Search (NAS) can achieve accuracy superior to human-designed neural networks, because of the easier automation process and searching techniques.While automated designed neural architectures can achieve new state-of-the-art performance with less human crafting efforts, there are three obstacles which hinder us building the next generation NAS algorithms: (1) search space is constrained which limits their representation ability; (2) searching large search space is time costly which slows down the model crafting process; (3) inference of complicated neural architectures are slow which limits the deployability on different devices To improve search space, previous NAS works rely on existing block motifs. Specifically, previous search space seek the best combination of MobileNetV2 blocks without exploring the sophisticated cell connections. To accelerate searching process, more accurate description of neural architecture is necessary. To deploy neural architectures to hardware, better adaptability is required. The dissertation proposes ScaleNAS to expand a search space that is adaptable to multiple vision-based tasks. The dissertation will show that NASGEM overcomes the neural architecture representation ability to accelerate searching. Finally, we shows how to integrate neural architecture search to strucural pruning and mixed precision quantization to further improve hardware deployment.

Description
Dissertation
Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Computer engineering
Permalink
https://hdl.handle.net/10161/23808
Citation
Cheng, Hsin-Pai (2021). Efficient and Generalizable Neural Architecture Search for Visual Recognition. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/23808.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University