Computational spectral microscopy and compressive millimeter-wave holography
This dissertation describes three computational sensors. The first sensor is a scanning multi-spectral aperture-coded microscope containing a coded aperture spectrometer that is vertically scanned through a microscope intermediate image plane. The spectrometer aperture-code spatially encodes the object spectral data and nonnegative
least squares inversion combined with a series of reconfigured two-dimensional (2D spatial-spectral) scanned measurements enables three-dimensional (3D) (x, y, λ) object estimation. The second sensor is a coded aperture snapshot spectral imager that employs a compressive optical architecture to record a spectrally filtered projection
of a 3D object data cube onto a 2D detector array. Two nonlinear and adapted TV-minimization schemes are presented for 3D (x,y,λ) object estimation from a 2D compressed snapshot. Both sensors are interfaced to laboratory-grade microscopes and
applied to fluorescence microscopy. The third sensor is a millimeter-wave holographic imaging system that is used to study the impact of 2D compressive measurement on 3D (x,y,z) data estimation. Holography is a natural compressive encoder since a 3D
parabolic slice of the object band volume is recorded onto a 2D planar surface. An adapted nonlinear TV-minimization algorithm is used for 3D tomographic estimation from a 2D and a sparse 2D hologram composite. This strategy aims to reduce scan time costs associated with millimeter-wave image acquisition using a single pixel receiver.
Engineering, System Science
Physics, Optics
compressive sensing
holography
Microscopy
millimeter-wave
optical system design
sensor design

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Duke Dissertations
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info