Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LOcal Void Analysis of MAP scaffolds (LOVAMAP)


Access is limited until:
2024-05-26
View / Download
21.9 Mb
Date
2022
Author
Riley, Lindsay
Advisor
Segura, Tatiana
Repository Usage Stats
53
views
0
downloads
Abstract

Our lab designs hydrogel microparticles (HMPs) that are interlinked to form microporous annealed particle (MAP) scaffolds for wound healing applications. The therapeutic effects of MAP are attributed, in part, to the void space between particles that creates inherent micro-porosity through which cells can infiltrate and migrate unhindered. Cell behavior is influenced by local geometry, and our goal is to design scaffolds that influence cells toward pro-healing behaviors. To accomplish this, we need a methodology for quantitatively characterizing the void space of MAP scaffolds in order to study the relationships between internal microarchitecture and therapeutic outcomes. The work presented here is a visually-rich dissertation that covers our approach for analyzing the void space of packed particles. We use techniques from computational geometry and graph theory to develop a robust methodology for segmenting the void space into natural pockets of open space and outputting a set of descriptors that characterize the space. Our methods are developed using simulated MAP scaffolds covering a range of particle compositions, including mixed particle sizes, stiffnesses, and shapes. Our software, called LOcal Void Analysis of MAP scaffolds (LOVAMAP), has allowed us to study many aspects of void space, including global descriptors like void volume fraction, local ‘pore’ measurements of size and shape, and additional features like ligand availability, paths, isotropy/anisotropy, and available regions for unhindered migration based on size. LOVAMAP is an enabling technology that can be used for analyzing real scaffolds or studying simulated scaffolds to inform material design. It serves as a platform for void space analysis that can easily be built upon to encompass ever-growing innovations in scaffold characterization.

Description
Dissertation
Type
Dissertation
Department
Biomedical Engineering
Subject
Biomedical engineering
biomaterials
computational
granular
particle packing
porosity
void space
Permalink
https://hdl.handle.net/10161/25268
Citation
Riley, Lindsay (2022). LOcal Void Analysis of MAP scaffolds (LOVAMAP). Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25268.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University