Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical Approximation of Gaussian-Smoothed Optimal Transport

Thumbnail
View / Download
2.0 Mb
Date
2022
Author
Yang, Congwei
Advisor
Reeves, Galen
Repository Usage Stats
133
views
129
downloads
Abstract

The Optimal Transport (OT) Distance, especially the Wasserstein distance, has important applications in statistics and machine learning. Though the optimal transport distance possesses many favorable properties, it is not widely applicable, especially in high dimensions, due to its computational cost and the "curse of dimensionality". In the past few years, the Sinkhorn Algorithm [Cuturi, 2013], which uses entropy regularization to relieve the computational burden, provides an efficient approximation of the optimal transport distances. Moreover, the recently proposed Gaussian-Smoothed Optimal Transport (GOT) framework by [Goldfeld and Greenewald, 2020] provides potential solution to alleviate the "curse of dimensionality". Furthermore, [Makkuva et al., 2020] proposed a new algorithm that uses the Input Convex Neural Network (ICNN) to represent the optimal transport map with the gradient of convex functions. Inspired by previous works, we addressed the characteristics of different approximation algorithms for Optimal Transport distances and proposed a multiple sampling scheme under the Gaussian-Smoothed Optimal Transport framework. The simulation study shows that the multiple sampling essentially leads to better representation of Gaussian smoothness, and thus provides more accurate approximation, especially in high dimensions. Finally, we proposed a derivation that transforms 2-Wasserstein distance into the mean-width of a convex hull under a specific pair of distribution classes, and thus allows the analytical computation of 2-Wasserstein distances. We further verified this analytical result by Monte-Carlo simulation.

Description
Master's thesis
Type
Master's thesis
Department
Statistical Science
Subject
Statistics
Optimal Transport
Wasserstein Distance
Permalink
https://hdl.handle.net/10161/25362
Citation
Yang, Congwei (2022). Numerical Approximation of Gaussian-Smoothed Optimal Transport. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/25362.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University