Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chip Scale Integrated Optical Sensing Systems with Digital Microfluidic Systems

Thumbnail
View / Download
2.1 Mb
Date
2010
Author
Luan, Lin
Advisor
Jokerst, Nan M
Repository Usage Stats
522
views
1,151
downloads
Abstract

Data acquisition and diagnostics for chemical and biological analytes are critical to medicine, security, and the environment. Miniaturized and portable sensing systems are especially important for medical and environmental diagnostics and monitoring applications. Chip scale integrated planar photonic sensing systems that can combine optical, electrical and fluidic functions are especially attractive to address sensing applications, because of their high sensitivity, compactness, high surface specificity after surface customization, and easy patterning for reagents. The purpose of this dissertation research is to make progress toward a chip scale integrated sensing system that realizes a high functionality optical system integration with a digital microfluidics platform for medical diagnostics and environmental monitoring.

This thesis describes the details of the design, fabrication, experimental measurement, and theoretical modeling of chip scale optical sensing systems integrated with electrowetting-on-dielectric digital microfluidic systems. Heterogeneous integration, a technology that integrates multiple optical thin film semiconductor devices onto arbitrary host substrates, has been utilized for this thesis. Three different integrated sensing systems were explored and realized. First, an integrated optical sensor based upon the heterogeneous integration of an InGaAs thin film photodetector with a digital microfluidic system was demonstrated. This integrated sensing system detected the chemiluminescent signals generated by a pyrogallol droplet solution mixed with H2O2 delivered by the digital microfluidic system.

Second, polymer microresonator sensors were explored. Polymer microresonators are useful components for chip scale integrated sensing because they can be integrated in a planar format using standard semiconductor manufacturing technologies. Therefore, as a second step, chip scale optical microdisk/ring sensors integrated with digital microfluidic systems were fabricated and measured. . The response of the microdisk and microring sensing systems to the change index of refraction, due to the glucose solutions in different concentrations presented by the digital microfluidic to the resonator surface, were measured to be 95 nm/RIU and 87nm/RIU, respectively. This is a first step toward chip-scale, low power, fully portable integrated sensing systems.

Third, a chip scale sensing system, which is composed of a planar integrated optical microdisk resonator and a thin film InGaAs photodetector, integrated with a digital microfluidic system, was fabricated and experimentally characterized. The measured sensitivity of this sensing system was 69 nm/RIU. Estimates of the resonant spectrum for the fabricated systems show good agreement with the theoretical calculations. These three systems yielded results that have led to a better understanding of the design and operation of chip scale optical sensing systems integrated with microfluidics.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Engineering, Electronics and Electrical
Digital Microfluidics
heterogeneous integration
Microresonator
optical sensor
Permalink
https://hdl.handle.net/10161/3020
Citation
Luan, Lin (2010). Chip Scale Integrated Optical Sensing Systems with Digital Microfluidic Systems. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3020.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University