Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thin Film Edge Emitting Lasers and Polymer Waveguides Integrated on Silicon

Thumbnail
View / Download
2.3 Mb
Date
2010
Author
Palit, Sabarni
Advisor
Jokerst, Nan M
Repository Usage Stats
446
views
2,552
downloads
Abstract

The integration of planar on-chip light sources is a bottleneck in the implementation of portable planar chip-scale photonic integrated sensing systems, integrated optical interconnects, and optical signal processing systems on platforms such as Silicon (Si) and Si-CMOS integrated circuits. A III/V on-chip laser source integrated onto Si needs to use standard semiconductor fabrication techniques, operate at low power, and enable efficient coupling to other devices on the Si platform.

In this thesis, thin film strain compensated InGaAs/GaAs single quantum well (SQW) separate confinement heterostructure (SCH) edge emitting lasers (EELs) have been implemented with patterning on both sides of the thin film laser under either growth or host substrate support, with the devices metal/metal bonded to Si and SiO2/Si substrates. Gain and index guided lasers in various configurations fabricated using standard semiconductor manufacturing processes were simulated, fabricated, and experimentally characterized. Low threshold current densities in the range of 250 A/cm<super>2</super> were achieved. These are the lowest threshold current densities achieved for thin film single quantum well (SQW) lasers integrated on Si reported to date, and also the lowest reported, for thin film lasers operating in the 980 nm wavelength window.

These thin film EELs were also integrated with photolithographically patterned polymer (SU-8) waveguides on the same SiO2/Si substrate. Coupling of the laser and waveguide was compared for the cases where an air gap existed between the thin film laser and the waveguide, and in which one facet of the thin film laser was embedded in the waveguide. The laser to waveguide coupling was improved by embedding the laser facet into the waveguide, and eliminating the air gap between the laser and the waveguide. Although the Fresnel reflectivity of the embedded facet was reduced by embedding the facet in the polymer waveguide, leading to a 27.2% increase in threshold current density for 800 &mum long lasers, the slope efficiency of the L-I curves was higher due to preferential power output from the front (now lower reflectivity) facet. In spite of this reduced mirror reflectivity, threshold current densities of 260 A/cm<super>2</super> were achieved for 1000 &mum long lasers. This passively aligned structure eliminates the need for precise placement and tight tolerances typically found in end-fire coupling configurations on separate substrates.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Engineering, Electronics and Electrical
heterogeneous integration
hybrid integration
photonic integrated circuits
polymer waveguides
thin film lasers
Permalink
https://hdl.handle.net/10161/3089
Citation
Palit, Sabarni (2010). Thin Film Edge Emitting Lasers and Polymer Waveguides Integrated on Silicon. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3089.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University