Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear Electroelastic Dynamical Systems for Inertial Power Generation

Thumbnail
View / Download
8.1 Mb
Date
2011
Author
Stanton, Samuel
Advisor
Mann, Brian P
Repository Usage Stats
382
views
1,479
downloads
Abstract

Within the past decade, advances in small-scale electronics have reduced power consumption requirements such that mechanisms for harnessing ambient kinetic energy for self-sustenance are a viable technology. Such devices, known as energy harvesters, may enable self-sustaining wireless sensor networks for applications ranging from Tsunami warning detection to environmental monitoring to cost-effective structural health diagnostics in bridges and buildings. In particular, flexible electroelastic materials such as lead-zirconate-titanate (PZT) are sought after in designing such devices due to their superior efficiency in transforming mechanical energy into the electrical domain in comparison to induction methods. To date, however, material and dynamic nonlinearities within the most popular type of energy harvester, an electroelastically laminated cantilever beam, has received minimal attention in the literature despite being readily observed in laboratory experiments.

In the first part of this dissertation, an experimentally validated first-principles based modeling framework for quantitatively characterizing the intrinsic nonlinearities and moderately large amplitude response of a cantilevered electroelastic generator is developed. Nonlinear parameter identification is facilitated by an analytic solution for the generator's dynamic response alongside experimental data. The model is shown to accurately describe amplitude dependent frequency responses in both the mechanical and electrical domains and implications concerning the conventional approach to resonant generator design are discussed. Higher order elasticity and nonlinear damping are found to be critical for correctly modeling the harvester response while inclusion of a proof mass is shown to invigorate nonlinearities a much lower driving amplitudes in comparison to electroelastic harvesters without a tuning mass.

The second part of the dissertation concerns dynamical systems design to purposefully engage nonlinear phenomena in the mechanical domain. In particular, two devices, one exploiting hysteretic nonlinearities and the second featuring homoclinic bifurcation are investigated. Both devices exploit nonlinear magnet interactions with piezoelectric cantilever beams and a first principles modeling approach is applied throughout. The first device is designed such that both softening and hardening nonlinear resonance curves produces a broader response in comparison to the linear equivalent oscillator. The second device makes use of a supercritical pitchfork bifurcation wrought by nonlinear magnetic repelling forces to achieve a bistable electroelastic dynamical system. This system is also analytically modeled, numerically simulated, and experimentally realized to demonstrate enhanced capabilities and new challenges. In addition, a bifurcation parameter within the design is examined as a either a fixed or adaptable tuning mechanism for enhanced sensitivity to ambient excitation. Analytical methodologies to include the method of Harmonic Balance and Melnikov Theory are shown to provide superior insight into the complex dynamics of the bistable system in response to deterministic and stochastic excitation.

Type
Dissertation
Department
Mechanical Engineering and Materials Science
Subject
Mechanical Engineering
Dynamical Systems
Melnikov Theory
Nonlinear Damping
Nonlinear Oscillations
Nonlinear Piezoelectricity
Piezoelectric Energy Harvesting
Permalink
https://hdl.handle.net/10161/3821
Citation
Stanton, Samuel (2011). Nonlinear Electroelastic Dynamical Systems for Inertial Power Generation. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3821.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University