Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Archival Collections
  • MEC Symposium Conference Proceedings
  • View Item
  •   DukeSpace
  • Archival Collections
  • MEC Symposium Conference Proceedings
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prosthesis-Guided Training For Practical Use Of Pattern Recognition Control Of Prostheses

Thumbnail
View / Download
413.6 Kb
Date
2011
Authors
Lock, Blair A.
Simon, Ann M.
Stubblefield, Kathy
Hargrove, Levi J.
Repository Usage Stats
1,077
views
1,169
downloads
Abstract
The potential for pattern recognition to improve powered prosthesis control has been discussed for many years. One remaining barrier to at-home use of these techniques is that practical methods of user prompting during system training are lacking. Most research and development of pattern recognition systems for prosthesis control has relied on on-screen cues to prompt the prosthesis wearer during signal collection; therefore most systems require connection to a computer or external device. We have developed a method called Prosthesis-Guided Training (PGT) to address this issue. In PGT, the prosthesis itself moves through a pre-programmed sequence of motions to prompt the wearer to elicit the appropriate muscle contractions. PGT requires no extra hardware and allows wearers to retrain, refresh, or recalibrate the controller in many locations and situations. Training via PGT is self-initiated and requires only about 1 minute of the wearer’s time. Furthermore, PGT provides a practical mechanism for overcoming malfunctioning or changing inputs, addresses differences in routine donning, and results in acquisition of myoelectric signals representative of those elicited during functional use. Qualitative and quantitative data acquired to investigate the efficacy of PGT suggest that it is an intuitive, effective, and clinically viable method of training pattern recognition–controlled prostheses.
Permalink
https://hdl.handle.net/10161/4713
Citation
Proceedings of the MEC'11 conference, UNB; 2011.
Collections
  • MEC Symposium Conference Proceedings
More Info
Show full item record

Copyright 2002, 2005 and 2008, The University of New Brunswick.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License. Creative Commons License

Rights for Collection: MEC Symposium Conference Proceedings


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University