Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Archival Collections
  • MEC Symposium Conference Proceedings
  • View Item
  •   DukeSpace
  • Archival Collections
  • MEC Symposium Conference Proceedings
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Natural Control Of Key Grip And Precision Grip Movements For A Myoelectric Prostheses

Thumbnail
View / Download
486.2 Kb
Date
1999
Authors
Santa-Cruz, M. C.
Riso, R. R.
Lange, B.
Sepulveda, F.
Repository Usage Stats
405
views
202
downloads
Abstract
Hand prosthesis function is augmented when the user canemploy lateral grasp as well as traditional palmer grasp. Our goal in this investigation was to enable the below-elbow (BE) prostheses user to switch between and use these grasp modes in a natural and reliable manner. We recorded the EMG from residual muscles (flexor dig; ext dig; flex pollicis longus, ext pollicis longus) involved in these grasp activities in an adult subject with below elbow (BE) amputation while she contracted her residual forearm muscles to mimic computer animations of different hand movements. To reduce crosstalk between the recordings from seperate muscles, and to enhance the stability of the recording interface over the 30-day duration of the experimental sessions, we used chronically implanted percutaneous coiled wire electrodes implanted for 30 days (12 one-day sessions). Artificial Neural Network (ANN) pattern recognition techniques were used to extract voluntary command signals from the EMG signals. The mean absolute value (MAV) of the EMG signals was selected as a feature for training multilayer perceptions. Initially, we trained ANNs having 5 hidden neurons using data from the 10' and 12 session individually (3 training sessions each). Three additional ANNs (sizes 4:7:4, 4:8:4, 4:9:4) were designed and trained (3 training sessions each) with combined data from experimental sessions 10 and 12. Subsequently, we separately tested the performance of these ANNs with data from the 9, 10 and 12 experimental sessions. While the results showed that data from different experimental days were substantially consistent, more reliable recognition of the grasp mode from any arbitrary test sample (i .e.. taken from test sessions 9,10 or 12), was achieved when we used an ANN that was trained with representative samples from more than a single experimental day (e.g. using 10th and 12th experimental days data for training). This produced mean rates of recognition (averaged over the results from the three ANN training sessions with network size 4:8:4) of 97 6% key grip closing, 83 3% keygrip opening, 85.7% precision grip closing, 96.4% precision grip opening, for the combined evaluation data from all test sets. We conclude that intuitive operator selection, between key grip and precision grip modalities, is feasible for cases of BE amputation using recorded myoelectric signals.
Permalink
https://hdl.handle.net/10161/4919
Citation
From "MEC 99," Proceedings of the 1999 MyoElectric Controls/Powered Prosthetics Symposium Fredericton, New Brunswick, Canada: August, 1999. Copyright University of New Brunswick.
Collections
  • MEC Symposium Conference Proceedings
More Info
Show full item record

Copyright 2002, 2005 and 2008, The University of New Brunswick.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License. Creative Commons License

Rights for Collection: MEC Symposium Conference Proceedings


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University