Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Geospatial Analysis of Pathways for Carbon Sequestration

Thumbnail
View / Download
7.8 Mb
Date
2008-04-25
Author
Frankel, Anna
Advisor
Pratson, Lincoln
Repository Usage Stats
311
views
341
downloads
Abstract
The 2007 IPCC report detailed the warming of the earth is unmistakable and is most likely due to anthropogenic greenhouse gas (GHG) emissions. The earth’s natural processes are unable to reabsorb GHGs at the rate at which they are being emitted, subsequently increasing climate temperatures and affecting ecosystems and populations around the world. Carbon capture and sequestration technologies are a possible mitigating solution to preventing emission of GHGs into the atmosphere. This analysis takes a geospatial approach to understanding the interconnecting pathways between carbon sources and sequestration sinks for future CO2 pipeline networks in the United States. Using geographical information systems (GIS), engineering, environmental, and social factors important to the pipeline siting process are evaluated and combined to make a geographical cost surface. A least cost path sensitivity analysis was performed to ensure confidence in the suitability of the cost surface. The final CO2 pipeline cost surface investigates the spatial dynamics of carbon sequestration and the relative cost elements that will influence the pipeline network. Utilities and other organizations can use the cost surface in future projects as an analytical tool showing areas of relative high and low pipeline costs. A scenario analysis was performed using the final CO2 cost surface as a tool to examine future spatial configurations of sequestration sites. The analysis found that a sequestration scenario with multiple points of CO2 injection across the United States would yield the lowest total relative costs for a national pipeline network.
Type
Master's project
Department
Nicholas School of the Environment and Earth Sciences
Subject
CO2 sequestration
pipelines
GIS
pathways
cost surface
Permalink
https://hdl.handle.net/10161/534
Citation
Frankel, Anna (2008). A Geospatial Analysis of Pathways for Carbon Sequestration. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/534.
Collections
  • Nicholas School of the Environment
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Nicholas School of the Environment


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University