Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Technology for Brain-Machine Interfaces

Thumbnail
View / Download
43.0 Mb
Date
2012
Author
Hanson, Timothy Lars
Advisor
Nicolelis, Miguel AL
Repository Usage Stats
581
views
323
downloads
Abstract

Brain-machine interfaces (BMIs) use recordings from the nervous system to extract volitional and motor parameters for controlling external actuators, such as prosthetics, thereby bypassing or replacing injured tissue. As such, they show enormous promise for restoring mobility, dexterity, or communication in paralyzed patients or amputees. Recent advancements to the BMI paradigm have made the brain -- machine communication channel bidirectional, enabling the prosthetic to inform the user about touch, temperature, strain, or other sensory information; these devices are hence called brain-machine-brain interfaces (BMBIs).

In the first chapter an intraoperative BMI is investigated in human patients undergoing surgery for implantation of a deep brain stimulation (DBS) treatment electrodes. While the BMI was marginally effective, we found high levels of behavioral and tremor tuning among cells recorded from the surgical targets, the subthalamic nucleus (STN) and ventral intermediate nucleus (VIM) of the thalamus. Notably, this tremor or behavior tuning was not mutually exclusive with oscillatory behavior, suggesting that physiological tuning persists even in the face of pathological oscillations. We then used nonlinear means for extracting tremor tuning, and found a significant population, consistent with double-frequency or co-modulation to tremor within the basal ganglia. Synchrony was then assessed over long and short timescales between pairs of neurons, and it was found that tremor tuning implies synchrony: all units exhibiting tremor tuning showed synchrony to at least one other unit.

BMBIs rely on a host of both scientific knowledge and technology for effective function, and this technology is currently in intensive research. In this dissertation two technologies for BMBIs, corresponding to the two directions of communication, are designed, described, and tested. The first one is a high compliance, digitally controlled, high-side current-regulated microstimulator for intracortical microstimulation (ICMS). The device is validated on the bench, tested in monkeys, and used for multiple experimental setups. Due to careful control of parasitic charge injection, the microstimulator is ideally suited for interleaving stimulation and recording as employed in some BMBIs.

The second technology described is a wireless, scalable, 128 channel neural recording system. The device features aggressive digital filtering to maximize signal quality, has spike sorting and compression on the transceiver, can be fully configured over the air through a custom wireless bridge and client software, and can run for over 30 hours on one battery. This system has been tested in a monkey while in its home cage, where the wireless system permitted unfettered, continuous recording and continuous access to a simplified BMI. A full description of the development and device is described, as well as results showing convincing 1D and suggestive 2D BMI control.

Type
Dissertation
Department
Neurobiology
Subject
Electrical engineering
Biomedical engineering
brain machine interface
microstimulation
recording
wireless
Permalink
https://hdl.handle.net/10161/5404
Citation
Hanson, Timothy Lars (2012). Technology for Brain-Machine Interfaces. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5404.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University