Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Response of Midbrain Pain Receptors in a Rodent Model of Radiculopathy

Thumbnail
View / Download
7.7 Mb
Date
2012
Author
Hwang, Priscilla Y.
Advisor
Setton, Lori A
Repository Usage Stats
321
views
138
downloads
Abstract

<bold>Introduction:</bold> Intervertebral disc herniation may contribute to nerve root compression or inflammatory processes that are associated with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait mechanics and the expression of key pain receptors in the midbrain of rats after induced radiculopathy in order to test the hypothesis that DRG injury can promote molecular changes in the midbrain. Materials and <bold>Methods:</bold> Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in Sprague-Dawley rats. Tail nucleus pulposus (NP) was harvested and discarded in sham-operated rats. At 1 and 4 weeks after surgery, DRGs were sectioned and tested for immunoreactivity to astrocytes and microglial. Also at 1 and 4 weeks after surgery, midbrains were sectioned and tested for immunoreactivity to serotonin (5HT2B), mu-opioid (&mu;-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. Quantitative analysis was performed on all midbrain immunostained images and compared to naïve controls. Cerebral spinal fluid was also extracted at 1 and 4 weeks after surgery for monocyte-chemoattractant protein (MCP-1) assessment. <bold>Results:</bold> NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the entire time of the study. Astroctye activation was observed at the DRG 4 weeks after surgery. An increased expression of 5HT2B was observed in NP-treated rats at 1, but not at 4 weeks. Increased expression of &mu;-OR and mGluR5 was observed in the periaqueductal gray (PAG) region of NP-treated rat midbrains at 1 and 4 weeks post-surgery. By contrast, increased expression levels of mGluR5 in the PAG region of sham animals reverted to naïve levels by 4 weeks after surgery. No changes were observed in expression levels of mGluR4 in either sham or NP-treated animals at any point in this study. MCP-1 levels were higher in NP-treated animals at 4 weeks compared to sham animals. <bold>Conclusion: </bold> These observations support the hypothesis that the midbrain responds to injury at the DRG with a transient and adaptive change in receptors regulating pain mechanisms.

Type
Master's thesis
Department
Biomedical Engineering
Subject
Biomedical engineering
dorsal root ganglion
intervertebral disc
lumbar spine
midbrain
pain receptors
radiculopathy
Permalink
https://hdl.handle.net/10161/5446
Citation
Hwang, Priscilla Y. (2012). Response of Midbrain Pain Receptors in a Rodent Model of Radiculopathy. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/5446.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University