Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of Fault-Insertion Test and Diagnosis of Functional Failures

Thumbnail
View / Download
3.6 Mb
Date
2011
Author
Zhang, Zhaobo
Advisor
Chakrabarty, Krishnendu
Repository Usage Stats
497
views
1,192
downloads
Abstract

Advances in semiconductor technology and design automation methods have introduced a new era for electronic products. With design sizes in millions of logic gates and operating frequencies in GHz, defects-per-million rates continue to increase, and defects are manifesting themselves in subtle ways. Traditional test methods are not sufficient to guarantee product quality and diagnostic programs cannot rapidly locate the root cause of failure in large systems. Therefore, there is a need for efficient fault diagnosis methods that can provide quality assurance, accelerate new product release, reduce manufacturing cost, and increase product yield.

This thesis research is focused on fault-insertion test (FIT) and fault diagnosis at the board and system levels. FIT is a promising technique to evaluate system reliability and facilitate fault diagnosis. The error-handling mechanism and system reliability can be assessed in the presence of intentionally inserted faults, and artificial faulty scenarios can be used as references for fault diagnosis. However, FIT needs to be deployed under constraints of silicon area, design effort, availability of equipment, and what is actually possible to test from one design to the next. In this research, physical defect modeling is developed to provide an efficient solution for fault-insertion test. Artificial faults at the pin level are created to represent physical defects inside devices. One pin-level fault is able to mimic the erroneous behaviors caused by multiple internal defects. Therefore, system reliability can be evaluated in a more efficient way.

Fault diagnosis is a major concern in the semiconductor industry. As the density and complexity of systems increase relentlessly and the subtle effects of defects in nanometer technologies become more pronounced, fault diagnosis becomes difficult, time-consuming, and ineffective. Diagnosis of functional failure is especially challenging. Moreover, the cost associated with board-level diagnosis is escalating rapidly. Therefore, this thesis presents a multi-pronged approach to improve the efficiency and accuracy of fault diagnosis, including the construction of a diagnostic framework with FIT and Bayesian inference, the extraction of an effective fault syndrome (error flow), the selection of diagnosis-oriented fault-insertion points, and the application of machine learning for intelligent diagnosis.

First, in the inference-based diagnosis framework, FIT is used to create a large number of faulty samples and derive the probabilities needed for the application of Bayes' theorem; next the probability of a fault candidate being the root cause can be inferred based on the given fault syndromes. Results on a case study using an open-source RISC system-on-chip demonstrate the feasibility and effectiveness of the proposed approach. Second, the concept of error flow is proposed to mimic actual data propagation in a circuit, and thus it reflects the logic functionality and timing behavior of circuits. With this additional information, more fault syndromes are distinguishable. Third, diagnosis-oriented fault-insertion points are defined and selected to create the representative and distinguishable syndromes. Finally, machine learning approaches are used to facilitate the debug and repair process. Without requiring the need to understand the complex functionality of the boards, an intelligent diagnostic system is designed to automatically exploit the diagnostic knowledge available from past cases and make decisions on new cases.

In summary, this research has investigated efficient means to perform fault-insertion test and developed automated and intelligent diagnosis methods targeting functional failures at the board level. For a complex circuit board currently in production, the first-time success rate for diagnosis has been increased from 35.63% to 72.64%. It is expected to contribute to quality assurance, product release acceleration, and manufacturing-cost reduction in the semiconductor industry.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Electrical Engineering
Fault Diagnosis
Fault-Insertion Test
Functional Failures
Machine learning
Manufacturing Test
Test Optimization
Permalink
https://hdl.handle.net/10161/5663
Citation
Zhang, Zhaobo (2011). Optimization of Fault-Insertion Test and Diagnosis of Functional Failures. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5663.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University