Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CaMKK2 Contributes to the Regulation of Energy Balance

Thumbnail
View / Download
6.9 Mb
Date
2011
Author
Lin, Fumin
Advisor
Means, Anthony R
Repository Usage Stats
390
views
396
downloads
Abstract

The incidence of obesity and associated diseases such as type 2-diabetes and hypertension has reached epidemic portions worldwide and attracted increased interest to understand the mechanisms that are responsible for these diseases. Obesity can result from excessive energy intake, and increasing evidence has emphasized the role of the central nervous system, especially the hypothalamus, in regulating food intake. White adipose, as a direct target of obesity and an important endocrine organ, also has long been a subject of scientific inquiry. AMPK, a conserved energy sensor, has been shown to play important roles in both the hypothalamus and adipose. Recently, CaMKK2 was shown to function as an AMPK kinase. I used intracerebroventricular cannulation as a means to acutely inhibit hypothalamic CaMKK2 with STO-609 and characterize the appetite change associated with loss of CaMKK2 function. Infusion of STO-609 in wild-type mice, but not CaMKK2-null mice, inhibited appetite and promoted weight loss consistent with reduced NPY and AgRP mRNA. Furthermore, intraperitoneal injection of ghrelin increased food intake in wild-type but not CaMKK2-null mice, and 2-DG increased appetite in both types of mice, indicating that CaMKK2 functions downstream of ghrelin to activate AMPK and upregulate appetite. As CaMKK2-null mice were protected from high-fat diet-induced obesity and diabetes, I performed a pair feeding experiment using a high-fat diet and demonstrated that protection of CaMKK2-null mice did not require reduced food consumption. Analysis of brown adipose tissue and metabolic analysis indicated that CaMKK2-null mice did not expend more energy than WT mice. Interestingly, we were surprised to find that CaMKK2-null mice had more adipose than wild-type mice when fed standard chow (5001). By real-time PCR and immunoblot, I identified CaMKK2 expression in preadipocytes and showed that it decreased during adipogenesis. I used STO-609 or shRNA to block CaMKK2 activity in preadipocytes, which resulted in enhanced adipogenesis and increased mRNA of adipogenic genes. I also identified AMPK as the relevant downstream target of CaMKK2 involved in inhibiting adipogenesis via a pathway that maintained Pref-1 mRNA. Consistent with the in vitro data, we further demonstrated that CaMKK2-null mice have more adipocytes but fewer preadipocytes, which supports our hypothesis that loss of CaMKK2 enhances adipogenesis by depleting the preadipocyte pool. Together the data presented herein contribute to our understanding of distinct mechanisms by which CaMKK2 contributes to feeding behavior and adipogenesis.

Type
Dissertation
Department
Pharmacology
Subject
Molecular Biology
Cellular Biology
adipogenesis
AMPK
CaMKK2
NPY
Pref-1
Permalink
https://hdl.handle.net/10161/5696
Citation
Lin, Fumin (2011). CaMKK2 Contributes to the Regulation of Energy Balance. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5696.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University