Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of the Aerodynamics of Small-scale Flapping Aircraft in Hover

Thumbnail
View / Download
6.6 Mb
Date
2008-06-27
Author
Lebental, Sidney
Advisor
Hall, Kenneth C
Repository Usage Stats
623
views
2,666
downloads
Abstract

Flapping flight is one of the most widespread mean of transportation. It is a complex unsteady aerodynamic problem that has been studied extensively in the past century. Nevertheless, by its complex nature, flapping flight remains a challenging subject. With the development of micro air vehicles, researchers need new computational methods to design these aircrafts efficiently.

In this dissertation, I will present three different methods of optimization for flapping flight with an emphasis on hovering with each their advantages and drawbacks. The first method was developed by Hall et al. It is an extremely fast and powerful three-dimensional approach. However, the assumptions made to develop this theory limit its use to lightly loaded wings. In addition, it only models the motion of the trailing edge and not the actual motion of the wing.

In a second part, I will present a two-dimensional unsteady potential method. It uses a freely convected wake which removes the lightly loaded restriction. This method shows the existence of an optimal combination of plunging and pitching motion. The motion is optimal in the sense that for a required force vector, the aerodynamic power is minimal.

The last method incorporates the three-dimensional effects. These effects are especially important for low aspect ratio wings. Thus, a three-dimensional unsteady potential vortex method was developed. This method also exhibits the presence of an optimal flapping/pitching motion. In addition, it agrees really well with the two previous methods and with the actual kinematics of birds during hovering flapping flight.

To conclude, some preliminary design tools for flapping wings in forward and hovering flight are presented in this thesis.

Type
Dissertation
Department
Mechanical Engineering and Materials Science
Subject
Engineering, Mechanical
Engineering, Aerospace
flapping
hovering
vortex method
optimization
MAV
NAV
Permalink
https://hdl.handle.net/10161/692
Citation
Lebental, Sidney (2008). Optimization of the Aerodynamics of Small-scale Flapping Aircraft in Hover. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/692.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University