Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Undergraduate Honors Theses and Student papers
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Undergraduate Honors Theses and Student papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sequence-Dependence of DX DNA Electronic Properties and Thermal Fluctuations

Thumbnail
View / Download
11.3 Mb
Date
2013-04-30
Author
Zhang, William
Repository Usage Stats
308
views
423
downloads
Abstract
The Watson-Crick base-pairing of DNA has been exploited through sticky-end cohesion and branched junctions to create complex self-assemblying nanostructures. The double-crossover (DX) junction is a common motif in these structures. Interest in nanoelectronics has led to previous experimental studies of the DX structure as a nanoscale current splitter. Here, we build atomic-level models of both the original sequence and redesigned improved sequences. We produce 10 ns of molecular dynamics simulation snapshots for each sequence, which indicate a universally stable central core and fluctuating forks. We then use CNDO, a semi-empirical quantum mechanics method assuming zero differential overlap, to compute electronic structures for various segments of each system. Using the basic equation of Marcus theory, we find that our redesigned "Duke" sequence achieves a maximum cross-helical hopping rate fifty times greater than the original sequence. Our results form a foundation for atomic-level models of larger DNA nanostructures, and indicate that a careful consideration of three-dimensional geometry is crucial to sequence design in DNA nanotechnology.
Type
Honors thesis
Department
Physics
Subject
DNA nanotechnology
double crossover
quantum chemistry
molecular dynamics
thermal conformations
biophysics
Permalink
https://hdl.handle.net/10161/6968
Citation
Zhang, William (2013). Sequence-Dependence of DX DNA Electronic Properties and Thermal Fluctuations. Honors thesis, Duke University. Retrieved from https://hdl.handle.net/10161/6968.
Collections
  • Undergraduate Honors Theses and Student papers
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Undergraduate Honors Theses and Student papers


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University