Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical Solution of Multiscale Electromagnetic Systems

Thumbnail
View / Download
2.9 Mb
Date
2013
Author
TOBON, LUIS E.
Advisor
Liu, Qing H
Repository Usage Stats
352
views
422
downloads
Abstract

The Discontinuous Galerkin time domain (DGTD) method is promising in modeling of realistic multiscale electromagnetic systems. This method defines the basic concept for implementing the communication between multiple domains with different scales.

Constructing a DGTD system consists of several careful choices: (a) governing equations; (b) element shape and corresponding basis functions for the spatial discretization of each subdomain; (c) numerical fluxes onto interfaces to bond all subdomains together; and (d) time stepping scheme based on properties of a discretized

system. This work present the advances in each one of these steps.

First, a unified framework based on the theory of differential forms and the finite element method is used to analyze the discretization of the Maxwell's equations. Based on this study, field intensities (<bold>E</bold> and <bold>H</bold>) are associated to 1-forms and curl-conforming basis functions; flux densities (<bold>D</bold> and <bold>B</bold>) are associated to 2-forms and divergence-conforming basis functions; and the constitutive relations are defined by Hodge operators.

A different approach is the study of numerical dispersion. Semidiscrete analysis is the traditional method, but for high order elements modal analysis is prefered. From these analyses, we conclude that a correct discretization of fields belonging to different p-form (e.g., <bold>E</bold> and <bold>B</bold>) uses basis functions with same order of interpolation; however, different order of interpolation must be used if two fields belong to the same p-form (e.g., <bold>E</bold> and <bold>H</bold>). An alternative method to evaluate numerical dispersion based on evaluation of dispersive Hodge operators is also presented. Both dispersion analyses are equivalent and reveal same fundamental results. Eigenvalues, eigenvector and transient results are studied to verify accuracy and computational costs of different schemes.

Two different approaches are used for implementing the DG Method. The first is based on <bold>E</bold> and <bold>H</bold> fields, which use curl-conforming basis functions with different order of interpolation. In this case, the Riemman solver shows the best performance to treat interfaces between subdomains. A new spectral prismatic element, useful for modeling of layer structures, is also implemented for this approach. Furthermore, a new efficient and very accurate time integration method for sequential subdomains is implemented.

The second approach for solving multidomain cases is based on <bold>E</bold> and <bold>B</bold> fields, which use curl- and divergence-conforming basis functions, respectively, with same order of interpolation. In this way, higher accuracy and lower memory consumption are obtained with respect to the first approach based on <bold>E</bold> and <bold>H</bold> fields. The centered flux is used to treat interfaces with non-conforming meshes, and both explicit Runge-Kutta method and implicit Crank-Nicholson method are implemented for time integration.

Numerical examples and realistic cases are presented to verify that the proposed methods are non-spurious and efficient DGTD schemes.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Electrical engineering
Computer engineering
Electromagnetics
Domain Decomposition Method
Multiscale Electromagnetic Systems
The Discontinuous Galerkin Time Domain method
The Finite Element Time Domain Method
Transient Analysis
Permalink
https://hdl.handle.net/10161/8196
Citation
TOBON, LUIS E. (2013). Numerical Solution of Multiscale Electromagnetic Systems. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8196.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University