Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying Malaria Transmission Risk in the Peruvian Amazon: A Geospatial Approach

Thumbnail
View / Download
16.4 Mb
Date
2014-04-25
Author
Yin, Elizabeth
Advisor
Pan, William
Repository Usage Stats
270
views
186
downloads
Abstract
Peru has endured a long history with malaria, an infectious disease caused by the mosquito-borne transmission of the Plasmodium parasite. Throughout the 20th century, disease prevalence has varied tremendously with a number of factors including Peru’s growth and development, variable support for malaria control measures, and the migration of immunologically naïve populations. However, many researchers believe that anthropogenic deforestation is at the root of a recent resurgence of malaria in the Peruvian Amazon. Deforestation creates favorable conditions for disease transmission by increasing mosquito habitat and placing humans in close proximity to more abundant disease vectors. In addition, rural communities often lack the resources to combat malaria due to the prohibitive cost of conventional technologies and lack of access to health care. Using data derived from field collections and remotely sensed images in the Loreto department of Peru, this study proposes a new method for characterizing malaria risk in the Peruvian Amazon. A variety of novel geospatial and remote sensing techniques were used to develop environmental layers from satellite imagery and produce the species distribution model. A geospatial risk model synthesized the predicted mosquito habitat and associated community risk factors into an assessment of malaria exposure risk. The threat model developed from this study can be used to create maps that will help local communities manage their malaria risk. Management efforts, such as the reduction of available mosquito breeding habitat, can be concentrated in areas identified as high-risk for malaria exposure.
Type
Master's project
Department
Nicholas School of the Environment and Earth Sciences
Subject
malaria; remote sensing; anopheles; risk assessment; peru; exposure
Permalink
https://hdl.handle.net/10161/8551
Citation
Yin, Elizabeth (2014). Identifying Malaria Transmission Risk in the Peruvian Amazon: A Geospatial Approach. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/8551.
Collections
  • Nicholas School of the Environment
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Nicholas School of the Environment


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University