Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Gaussian Processes for the Calibration and Exploration of Complex Computer Models

Thumbnail
View / Download
10.3 Mb
Date
2014
Author
Coleman-Smith, Christopher
Advisor
Müller, Berndt
Repository Usage Stats
507
views
1,547
downloads
Abstract

Cutting edge research problems require the use of complicated and computationally expensive computer models. I will present a practical overview of the design and analysis of computer experiments in high energy nuclear and astro phsyics. The aim of these experiments is to infer credible ranges for certain fundamental parameters of the underlying physical processes through the analysis of model output and experimental data.

To be truly useful computer models must be calibrated against experimental data. Gaining an understanding of the response of expensive models across the full range of inputs can be a slow and painful process. Gaussian Process emulators can be an efficient and informative surrogate for expensive computer models and prove to be an ideal mechanism for exploring the response of these models to variations in their inputs.

A sensitivity analysis can be performed on these model emulators to characterize and quantify the relationship between model input parameters and predicted observable properties. The result of this analysis provides the user with information about which parameters are most important and most likely to affect the prediction of a given observable. Sensitivity analysis allow us to identify what model parameters can be most efficiently constrained by the given observational data set.

In this thesis I describe a range of techniques for the calibration and exploration of the complex and expensive computer models so common in modern physics research. These statistical methods are illustrated with examples drawn from the fields of high energy nuclear physics and galaxy formation.

Type
Dissertation
Department
Physics
Subject
Theoretical physics
Statistics
Nuclear physics
Calibration
computer model
Emulator
Gaussian Processes
QCD
Quark Gluon Plasma
Permalink
https://hdl.handle.net/10161/8782
Citation
Coleman-Smith, Christopher (2014). Using Gaussian Processes for the Calibration and Exploration of Complex Computer Models. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8782.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University