Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semiparametric Bayesian Regression with Applications in Astronomy

Thumbnail
View / Download
7.7 Mb
Date
2014
Author
Broadbent, Mary Elizabeth
Advisor
Wolpert, Robert L
Repository Usage Stats
349
views
312
downloads
Abstract

In this thesis we describe a class of Bayesian semiparametric models, known as Levy Adaptive Regression Kernels (LARK); a novel method for posterior computation for those models; and the applications of these models in astronomy, in particular to the analysis of the photon fluence time series of gamma-ray bursts. Gamma-ray bursts are bursts of photons which arrive in a varying number of overlapping pulses with a distinctive "fast-rise, exponential decay" shape in the time domain. LARK models allow us to do inference both on the number of pulses, but also on the parameters which describe the pulses, such as incident time, or decay rate.

In Chapter 2, we describe a novel method to aid posterior computation in infinitely-divisible models, of which LARK models are a special case, when the posterior is evaluated through Markov chain Monte Carlo. This is applied in Chapter 3, where time series representing the photon fluence in a single energy channel is analyzed using LARK methods.

Due to the effect of the discriminators on BATSE and other instruments, it is important to model the gamma-ray bursts in the incident space. Chapter 4 describes the first to model bursts in the incident photon space, instead of after they have been distorted by the discriminators; since to model photons as they enter the detector is to model both the energy and the arrival time of the incident photon, this model is also the first to jointly model the time and energy domains.

Type
Dissertation
Department
Statistical Science
Subject
Statistics
Astrophysics
Permalink
https://hdl.handle.net/10161/9097
Citation
Broadbent, Mary Elizabeth (2014). Semiparametric Bayesian Regression with Applications in Astronomy. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9097.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University