Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extending Forest Rotation Age for Carbon Sequestration: A Cross-Protocol Comparison of Carbon Offsets of North American Forests

Thumbnail
View / Download
736.0 Kb
Date
2009-04-22
Author
Foley, Timothy
Advisors
Richter, Daniel deB.
Galik, Christopher
Repository Usage Stats
463
views
2,208
downloads
Abstract
As the issue of climate change rises in prominence, growing attention is being paid to the ability of forests to mitigate rising atmospheric concentrations of CO2. Through carbon offset programs, forest owners can be offered financial incentives to enhance the uptake and storage of carbon on their lands. This project presents a modeling framework within which the creditable carbon potential can be quantified from extending the rotation age of multiple forest stands. The differences in creditable carbon potential from rotation extensions across several North American forest types are explored. Additionally, the model enables the comparison of project creditable carbon amongst three accounting methodologies: the Department of Energy 1605b Registry, the Chicago Climate Exchange Protocol, and the Voluntary Carbon Standard Protocol. There are important methodological differences between these carbon accounting schemes which have implications to both forest owners and policymakers alike. It is shown here that the inclusion of methodologies to account for such issues as leakage, permanence, additionality and baseline-establishment, while increasing the overall legitimacy of any forest carbon offset program, can reduce creditable carbon to the forest owner by up to 70%. Regardless of the protocol used, Pacific Northwest forest types emerge as the most effective at sequestering carbon on a per area basis.
Type
Master's project
Department
Nicholas School of the Environment and Earth Sciences
Subject
Carbon
Forest Management
Offset
Sequestration
Rotation Age
Permalink
https://hdl.handle.net/10161/960
Citation
Foley, Timothy (2009). Extending Forest Rotation Age for Carbon Sequestration: A Cross-Protocol Comparison of Carbon Offsets of North American Forests. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/960.
Collections
  • Nicholas School of the Environment
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Nicholas School of the Environment


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University