Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Peptide Selectively Uncoupling BDNF Receptor TrkB from Phospholipase C gamma 1 Prevents Epilepsy and Anxiety-like Disorder

Thumbnail
View / Download
2.6 Mb
Date
2015
Author
Gu, Bin
Advisor
McNamara, James O
Repository Usage Stats
332
views
281
downloads
Abstract

Temporal lobe epilepsy is a common and devastating disorder that features recurrent seizures and is often associated with pathologic anxiety and hippocampal sclerosis. An episode of prolonged seizures (status epilepticus) is thought to promote development of human temporal lobe epilepsy years later. A chemical-genetic approach established proof of concept that transiently inhibiting the receptor tyrosine kinase, TrkB, following status epilepticus prevented epilepsy, anxiety-like behavior and hippocampal damage in a mouse model, providing rationale for developing a therapeutic targeting TrkB signaling. To circumvent the undesirable consequence that global inhibition of TrkB exacerbates neuronal degeneration following status epilepticus, we sought to identify both the TrkB-activated signaling pathway mediating these pathologies and a compound that uncouples TrkB from the responsible signaling effector. To accomplish these goals, we used genetically modified mice and a model of seizures and epilepsy induced by a chemoconvulsant. Genetic inhibition of TrkB-mediated phospholipase C gamma 1 (PLC gamma 1) signaling suppressed seizures induced by a chemoconvulsant, leading to design of a peptide (pY816) that inhibited the interaction of TrkB with PLC gamma 1. We demonstrate that pY816 selectively inhibits TrkB-mediated activation of PLC gamma 1 both in vitro and in vivo. Treatment with pY816 prior to administration of a chemoconvulsant suppressed seizures in a dose- and time-dependent manner. Treatment with pY816 initiated after chemoconvulsant-evoked status epilepticus and continued for just three days suppressed seizure-induction of epilepsy, anxiety-like behavior and hippocampal damage assessed months later. This study elucidates the signaling pathway by which TrkB activation produces diverse neuronal activity-driven pathologies and demonstrates therapeutic benefits of an inhibitor of this pathway in an animal model in vivo. A strategy of uncoupling a receptor tyrosine kinase from a signaling effector may prove useful in diverse diseases in which excessive receptor tyrosine kinase signaling contributes.

Type
Dissertation
Department
Pharmacology
Subject
Pharmacology
anxiety
phospholipase C gamma 1
temporal lobe epilepsy
TrkB
Permalink
https://hdl.handle.net/10161/9860
Citation
Gu, Bin (2015). A Peptide Selectively Uncoupling BDNF Receptor TrkB from Phospholipase C gamma 1 Prevents Epilepsy and Anxiety-like Disorder. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9860.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University