Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hypoelliptic Diffusion Maps and Their Applications in Automated Geometric Morphometrics

Thumbnail
View / Download
2.4 Mb
Date
2015
Author
Gao, Tingran
Advisor
Daubechies, Ingrid
Repository Usage Stats
687
views
711
downloads
Abstract

We introduce Hypoelliptic Diffusion Maps (HDM), a novel semi-supervised machine learning framework for the analysis of collections of anatomical surfaces. Triangular meshes obtained from discretizing these surfaces are high-dimensional, noisy, and unorganized, which makes it difficult to consistently extract robust geometric features for the whole collection. Traditionally, biologists put equal numbers of ``landmarks'' on each mesh, and study the ``shape space'' with this fixed number of landmarks to understand patterns of shape variation in the collection of surfaces; we propose here a correspondence-based, landmark-free approach that automates this process while maintaining morphological interpretability. Our methodology avoids explicit feature extraction and is thus related to the kernel methods, but the equivalent notion of ``kernel function'' takes value in pairwise correspondences between triangular meshes in the collection. Under the assumption that the data set is sampled from a fibre bundle, we show that the new graph Laplacian defined in the HDM framework is the discrete counterpart of a class of hypoelliptic partial differential operators.

This thesis is organized as follows: Chapter 1 is the introduction; Chapter 2 describes the correspondences between anatomical surfaces used in this research; Chapter 3 and 4 discuss the HDM framework in detail; Chapter 5 illustrates some interesting applications of this framework in geometric morphometrics.

Type
Dissertation
Department
Mathematics
Subject
Mathematics
Diffusion Maps
Fibre Bundles
Graph Laplacian
Hypoellipticity
Machine Learning
Riemannian Geometry
Permalink
https://hdl.handle.net/10161/9931
Citation
Gao, Tingran (2015). Hypoelliptic Diffusion Maps and Their Applications in Automated Geometric Morphometrics. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9931.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University