Nonparametric estimation of structural models for high-frequency currency market data

dc.contributor.author

Bansal, R

dc.contributor.author

Gallant, AR

dc.contributor.author

Hussey, R

dc.contributor.author

Tauchen, G

dc.date.accessioned

2010-03-09T15:29:22Z

dc.date.issued

1995-01-01

dc.description.abstract

Empirical modeling of high-frequency currency market data reveals substantial evidence for nonnormality, stochastic volatility, and other nonlinearities. This paper investigates whether an equilibrium monetary model can account for nonlinearities in weekly data. The model incorporates time-nonseparable preferences and a transaction cost technology. Simulated sample paths are generated using Marcet's parameterized expectations procedure. The paper also develops a new method for estimation of structural economic models. The method forces the model to match (under a GMM criterion) the score function of a nonparametric estimate of the conditional density of observed data. The estimation uses weekly U.S.-German currency market data, 1975-90. © 1995.

dc.format.mimetype

application/pdf

dc.identifier.issn

0304-4076

dc.identifier.uri

https://hdl.handle.net/10161/1902

dc.language.iso

en_US

dc.publisher

Elsevier BV

dc.relation.ispartof

Journal of Econometrics

dc.relation.isversionof

10.1016/0304-4076(94)01618-A

dc.title

Nonparametric estimation of structural models for high-frequency currency market data

dc.type

Journal article

pubs.begin-page

251

pubs.end-page

287

pubs.issue

1-2

pubs.organisational-group

Duke

pubs.organisational-group

Economics

pubs.organisational-group

Faculty

pubs.organisational-group

Fuqua School of Business

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

66

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bansal_nonparametric_estimation.pdf
Size:
5.65 MB
Format:
Adobe Portable Document Format