The Biochemical Characterization of Drosophila melanogaster RecQ4 Helicase
Date
2011
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
RecQ4, a member of the conserved RecQ family of helicases, is involved in replication and associated with several clinical syndromes. Although biologically important, the biochemistry of RecQ4 has remained elusive. We have expressed and purified Drosophila melanogaster RecQ4 from a baculovirus expression system. Biochemical characterization of the helicase, ATP hydrolysis, annealing, and binding activities of the enzyme has been performed, using native and non-native gel electrophoresis and thin layer chromatography, among other techniques. These reveal that RecQ4 is a 3' to 5' helicase that is stimulated by the presence of single-stranded DNA 3' of the duplex DNA region to be unwound. The enzyme is also capable of annealing complementary DNA strands, though this is inhibited by AMPPNP, a non-hydrolyzable analog of ATP. RecQ4 also forms a stable complex with single-stranded DNA in the presence of AMPPNP. We argue that the helicase activity of RecQ4 is important to the process of DNA replication. This leads to the conclusion that two helicases, RecQ4 and the Mcm2-7 complex, are involved in replication. The manner of their simultaneous involvement is not intuitive, and so models by which the two enzymes may cooperate are discussed.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Capp, Christopher Lee (2011). The Biochemical Characterization of Drosophila melanogaster RecQ4 Helicase. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3814.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.