Biosynthetic and Chemical Investigation of Lipid II-Binding Antimicrobials.

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

70
views
6
downloads

Abstract

Natural products belonging to the lipid II-binding family act as potent antimicrobial agents by disrupting cell wall biosynthesis via sequestering the late-stage intermediate lipid II. However, the emergence of resistance mechanisms and poor bioavailability have hindered the utility of these molecules as promising therapeutic intervention strategies to combat pathogenic bacterial infections. Gaining a deeper understanding of structural components and biosynthetic pathways can lead to the creation of second-generation derivatives to improve bioactivity and pharmacological properties. To explore this superfamily, we have used bioanalytical, biochemical, synthetic, computational, and enzymatic approaches that have been applied to three distinct projects. The first includes efforts to characterize the relationship between structural feature and bioactivity for the lipid II-binding CDA (calcium dependent antibiotic), malacidin. Through a series of minimally complex analogs, we determined non-proteinogenic amino acids and the N-acyl fatty acid moiety are essential for bioactivity. For the second project, we investigated a conserved mechanism of action for phylogenetically-related natural products within the lasso peptide subfamily. This work led to the discovery of a novel class I lasso peptide, arcumycin, and we validated a conserved mechanism of action for Actinobacteria-produced lasso peptides in targeting lipid II biosynthesis. Our last project sought to elucidate the mechanism of lipoinitiation for the ramoplanin family of molecules. Through a series of bioactivity assays, we found the transfer to the acyl carrier protein (ACP) in a fatty acyl-AMP ligase (FAAL)-dependent manner determined the specificity of lipids selected in the biosynthetic process. Collectively, through each project we have gained a deeper understanding of the structural elements and biosynthetic pathways of lipid II-binding antimicrobials.

Department

Description

Provenance

Citation

Citation

Stariha, Lydia (2021). Biosynthetic and Chemical Investigation of Lipid II-Binding Antimicrobials. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/24388.

Collections


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.