Depth- and curvature-based quantitative susceptibility mapping analyses of cortical iron in Alzheimer's disease.
Date
2024-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
In addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Merenstein, Jenna L, Jiayi Zhao, Devon K Overson, Trong-Kha Truong, Kim G Johnson, Allen W Song and David J Madden (2024). Depth- and curvature-based quantitative susceptibility mapping analyses of cortical iron in Alzheimer's disease. Cerebral cortex (New York, N.Y. : 1991). p. bhad525. 10.1093/cercor/bhad525 Retrieved from https://hdl.handle.net/10161/30009.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Jenna Merenstein
My research uses MRI to study the effect of healthy brain aging on numerous cognitive abilities, especially memory and attention. I also use MRI to study the structural and functional brain properties that differentiate Alzheimer's disease from healthy aging. I obtained my Ph.D. in Cognitive Neuroscience in April 2022 from Dr. Lani Bennett's lab at the University of California, Riverside. I am currently a Postdoctoral Associate working in the Brain Imaging and Analysis Center (BIAC) with Dr. David Madden.
Trong-Kha Truong
I co-lead the MR Engineering Lab, which is part of the Brain Imaging and Analysis Center at Duke University. Our research involves the development of novel magnetic resonance imaging (MRI) coil technologies – in particular integrated parallel reception, excitation, and shimming (iPRES) and integrated radio-frequency/wireless (iRFW) coils – to enable imaging, localized B0 shimming, and/or wireless communication with a single coil, thereby improving the image quality and clinical utility of MRI applications such as functional MRI and diffusion-weighted imaging in the human brain and body. We also develop high-resolution diffusion tensor imaging techniques to investigate the microstructure of the human brain and to detect abnormalities in neurological disorders such as Alzheimer’s disease.
Allen W Song
The research in our lab is concerned with advancing structural and functional MRI methodologies (e.g. fast and high-resolution imaging techniques) for human brain imaging. We also aim to improve our understanding of functional brain signals, including spatiotemporal characterizations of the blood oxygenation level dependent contrast and alternative contrast mechanisms that are more directly linked to the neuronal activities. Additional effort is invested in applying and validating the developed methods to study human functional neuroanatomy.
David Joseph Madden
My research focuses primarily on the cognitive neuroscience of aging: the investigation of age-related changes in perception, attention, and memory, using both behavioral measures and neuroimaging techniques, including positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI).
The behavioral measures have focused on reaction time, with the goal of distinguishing age-related changes in specific cognitive abilities from more general effects arising from a slowing in elementary perceptual processes. The cognitive abilities of interest include selective attention as measured in visual search tasks, semantic and episodic memory retrieval, and executive control processes.
The behavioral measures are necessary to define the cognitive abilities of interest, and the neuroimaging techniques help define the functional neuroanatomy of those abilities. The PET and fMRI measures provide information regarding neural activity during cognitive performance. DTI is a recently developed technique that images the structural integrity of white matter. The white matter tracts of the brain provide critical pathways linking the gray matter regions, and thus this work will complement the studies using PET and fMRI that focus on gray matter activation.
A current focus of the research program is the functional connectivity among regions, not only during cognitive task performance but also during rest. These latter measures, referred to as intrinsic functional connectivity, are beginning to show promise as an index of overall brain functional efficiency, which can be assessed without the implementation of a specific cognitive task. From DTI, information can be obtained regarding how anatomical connectivity constrains intrinsic functional connectivity. It will be important to determine the relative influence of white matter pathway integrity, intrinsic functional connectivity, and task-related functional connectivity, as mediators of age-related differences in behavioral measures of cognitive performance.
Ultimately, the research program can help link age-related changes in cognitive performance to changes in the structure and function of specific neural systems. The results also have implications for clinical translation, in terms of the identification of neural biomarkers for the diagnosis of neural pathology and targeting rehabilitation procedures.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.