Aspects of the (0,2)-McKay Correspondence
Date
2015
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
We study first order deformations of the tangent sheaf of resolutions of Calabi-Yau threefolds that are of the form $\CC^3/\ZZ_r$, focusing
on the cases where the orbifold has an isolated singularity. We prove a lower bound on the number
of deformations of the tangent bundle for any crepant resolution of this orbifold. We show that this lower bound is achieved when the resolution used is the
G-Hilbert scheme, and note that this lower bound can be found using a combinatorial count of (0,2)-deformation moduli fields for
N=(2,2) conformal field theories on the orbifold. We also find that in general this minimum is not achieved, and expect the discrepancy
to be explained by worldsheet instanton corrections coming from rational curves in the orbifold resolution. We show that
irreducible toric rational curves will account for some of the discrepancy, but also prove that there must be additional
worldsheet instanton corrections beyond those from smooth isolated rational curves.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Gaines, Benjamin C (2015). Aspects of the (0,2)-McKay Correspondence. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9863.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.