Algorithms for Allocation Problems in Online Settings

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



A fundamental computational challenge that arises in the operation of online systems, services, and platforms is that of resource allocation. Broadly defined, a resource allocation problem is one where set of users generate demands, which then have to be satisfied using a limited set of resources. In many of these scenarios, requests and jobs arrive in an online sequence, meaning they arrive over time and must be allocated without knowledge of future requests.

In this thesis, we examine resource allocation problems in online settings, focusing on problems in data center scheduling and internet advertising. Our results are summarized as follows.

• Vector Scheduling: We resolve the complexity of the vector scheduling problem, a variant of the classic load balancing problem first considered by Graham, where jobs have vectors loads (as opposed to a single scalar). We study the problem in the three classical settings—identical, unrelated, and related—giving competitive algorithms for optimizing generic q-norms of the machines loads. In each setting we show these algorithm are optimal by giving asymptotically matching lower bounds. Also as a consequence of these results, we give the first constant competitive algorithm for optimizing q-norms on related machines in the scalar setting.

• Budgeted Allocation: We study a variant of the online budgeted allocation (also called AdWords) problem where advertising budgets are expressed over multiple tiers of user-attribute granularity. We show that, unlike in the single-budget AdWords problem, obtaining a constant competitive ratio is impossible and give asymptotically tight upper and lower bounds. However, we then observe that in many real-world scenarios, multi-tier budgets have a laminar structure. In this setting we obtain a competitive ratio of e/(e−1) in the small bids case, which matches the best known AdWords result for single budgets.





Kell, Nathaniel Brian (2018). Algorithms for Allocation Problems in Online Settings. Dissertation, Duke University. Retrieved from


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.