Interpretability by Design: New Interpretable Machine Learning Models and Methods

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

722
views
1004
downloads

Abstract

As machine learning models are playing increasingly important roles in many real-life scenarios, interpretability has become a key issue for whether we can trust the predictions made by these models, especially when we are making some high-stakes decisions. Lack of transparency has long been a concern for predictive models in criminal justice and in healthcare. There have been growing calls for building interpretable, human understandable machine learning models, and "opening the black box" has become a debated issue in the media. My dissertation research addresses precisely the demand for interpretability and transparency in machine learning models. The key problem of this dissertation is: "Can we build machine learning models that are both accurate and interpretable?"

To address this problem, I will discuss the notion of interpretability as it relates to machine learning, and present several new interpretable machine learning models and methods I developed during my dissertation research. In Chapter 1, I will discuss two types of model interpretability -- predicate-based and case-based interpretability. In Chapters 2 and 3, I will present novel predicate-based interpretable models and methods, and their applications to understanding low-dimensional structured data. In particular, Chapter 2 presents falling rule lists, which extend regular decision lists by requiring the probabilities of the desired outcome to be monotonically decreasing down the list; Chapter 3 presents two-layer additive models, which are hybrids of predicate-based additive scoring models and small neural networks. In Chapter 4, I will present case-based interpretable deep models, and their applications to computer vision. Given the empirical evidence, I conclude in Chapter 5 that, by designing novel model architectures or regularization techniques, we can build machine learning models that are both accurate and interpretable.

Description

Provenance

Citation

Citation

Chen, Chaofan (2020). Interpretability by Design: New Interpretable Machine Learning Models and Methods. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/21036.

Collections


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.