Electronic Structure and Doping Processes in Novel Semiconductor Materials

Loading...
Thumbnail Image
Limited Access
This item is unavailable until:
2025-09-08

Date

2024

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

8
views
0
downloads

Abstract

Photoactive materials spark interest for areas such as solar energy conversion, photo-catalytic energy production, efficient light displays, or control of quantum-mechanical spin phenomena by light. This dissertation work centers on two classes of materials, chalcogenides and metal halide perovskites, chosen for their promise in light-interactive applications. Current research on these novel semiconductors is focused on overcoming challenges in detailed material design. Tuning strategies, including manipulation of chemical composition, dimensionality, and structural distortions, stand as exciting opportunities for modulating electronic and spin properties. These avenues for advancement necessitate a deep understanding of the complex physics that underlies material behavior, calling for density functional theory (DFT) simulations to capture intricate electronic structures and complex particle interactions.

This dissertation work therefore employs DFT simulations to focus specifically on electronic structure and defects in efforts to strengthen our understanding of structure-property relationships in chalcogenide and perovskite semiconductors. The ability to tune energy band gaps and spin splitting via Se-alloying in the 3D chalcogenide, CuPbSbS3 is demonstrated. Next, transferred symmetry breaking from chiral organics to inorganic-sublattices, and resultant impact to electronic and spin properties is reported in hybrid organic-inorganic metal-halides. Following this, DFT strategies are employed to study H-bonding in a 2D hybrid perovskite, (2-BrPEA)2PbI4, uncovering (i) strategies to improve H-bonding analyses and (ii) formation mechanisms of spin-related properties. Finally, the potential for electronic doping via introduction of impurities in the 2D hybrid perovskite, PEA2PbI4, is examined. DFT calculations uncover the most promising candidates for extrinsic n- and p-type dopants, alongside formation mechanisms of defect complexes and compensating defects.

Description

Provenance

Citation

Citation

Koknat, Gabrielle (2024). Electronic Structure and Doping Processes in Novel Semiconductor Materials. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/31983.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.