Partonic Transport Model Application to Heavy Flavor
dc.contributor.advisor | Bass, Steffen A | |
dc.contributor.author | Ke, Weiyao | |
dc.date.accessioned | 2020-01-27T16:52:16Z | |
dc.date.available | 2020-01-27T16:52:16Z | |
dc.date.issued | 2019 | |
dc.department | Physics | |
dc.description.abstract | Heavy-flavor particles are excellent probes of the properties of the hot and dense nuclear medium created in the relativistic heavy-ion collisions. Heavy-flavor transport coefficients in the quark-gluon plasma (QGP) stage of the collisions are particularly interesting, as they contain important information on the strong interaction at finite temperatures. Studying the heavy-flavor evolution in a dynamically evolving medium requires a comprehensive multi-stage modeling approach of both the medium and the probes, with an accurate implementation of the physical ingredients to be tested. For this purpose, I have developed a new partonic transport model (Linear-Boltzmann-plus-Diffusion-Transport-Model) LIDO and applied it to heavy quark propagation inside a QGP. The model has an improved implementation of parton in-medium bremsstrahlung and a flexible treatment of the probe-medium interactions, combining both large angle scatterings and diffusion processes. The model is then coupled to a high-energy event-generator, a hydrodynamic medium evolution and a hadronic transport model. Finally, applying a Bayesian analysis, I extract the heavy quark transport coefficients from a model-to-data comparison. The results, with uncertainty quantification, are found to be consistent with earlier extraction of the light-quark transport coefficients at high momentum and with first-principle calculations of the heavy-flavor diffusion constant at low momentum. | |
dc.identifier.uri | ||
dc.subject | Theoretical physics | |
dc.subject | Heavy flavor | |
dc.subject | Quark-gluon plasma | |
dc.subject | Transport coefficients | |
dc.title | Partonic Transport Model Application to Heavy Flavor | |
dc.type | Dissertation |